bartowski commited on
Commit
c46525f
·
verified ·
0 Parent(s):

Duplicate from bartowski/codegemma-1.1-7b-it-GGUF

Browse files
.gitattributes ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ codegemma-1.1-7b-it-IQ1_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ codegemma-1.1-7b-it-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ codegemma-1.1-7b-it-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ codegemma-1.1-7b-it-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ codegemma-1.1-7b-it-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ codegemma-1.1-7b-it-IQ2_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ codegemma-1.1-7b-it-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
43
+ codegemma-1.1-7b-it-IQ3_S.gguf filter=lfs diff=lfs merge=lfs -text
44
+ codegemma-1.1-7b-it-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
45
+ codegemma-1.1-7b-it-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
46
+ codegemma-1.1-7b-it-IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
47
+ codegemma-1.1-7b-it-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
48
+ codegemma-1.1-7b-it-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
49
+ codegemma-1.1-7b-it-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ codegemma-1.1-7b-it-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
51
+ codegemma-1.1-7b-it-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
52
+ codegemma-1.1-7b-it-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
53
+ codegemma-1.1-7b-it-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
54
+ codegemma-1.1-7b-it-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
55
+ codegemma-1.1-7b-it-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
56
+ codegemma-1.1-7b-it-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
57
+ codegemma-1.1-7b-it-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ codegemma-1.1-7b-it.imatrix filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ extra_gated_heading: Access CodeGemma on Hugging Face
4
+ extra_gated_prompt: >-
5
+ To access CodeGemma on Hugging Face, you’re required to review and agree to
6
+ Google’s usage license. To do this, please ensure you’re logged-in to Hugging
7
+ Face and click below. Requests are processed immediately.
8
+ extra_gated_button_content: Acknowledge license
9
+ pipeline_tag: text-generation
10
+ widget:
11
+ - text: >
12
+ <start_of_turn>user
13
+ Write a Python function to calculate the nth fibonacci number.<end_of_turn>
14
+ <start_of_turn>model
15
+ inference:
16
+ parameters:
17
+ max_new_tokens: 200
18
+ license: gemma
19
+ license_link: https://ai.google.dev/gemma/terms
20
+ quantized_by: bartowski
21
+ ---
22
+
23
+ ## Llamacpp imatrix Quantizations of codegemma-1.1-7b-it
24
+
25
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2777">b2777</a> for quantization.
26
+
27
+ Original model: https://huggingface.co/google/codegemma-1.1-7b-it
28
+
29
+ All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
30
+
31
+ ## Prompt format
32
+
33
+
34
+ ```
35
+ <bos><start_of_turn>user
36
+ {prompt}<end_of_turn>
37
+ <start_of_turn>model
38
+ ```
39
+
40
+ ## Download a file (not the whole branch) from below:
41
+
42
+ | Filename | Quant type | File Size | Description |
43
+ | -------- | ---------- | --------- | ----------- |
44
+ | [codegemma-1.1-7b-it-Q8_0.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q8_0.gguf) | Q8_0 | 9.07GB | Extremely high quality, generally unneeded but max available quant. |
45
+ | [codegemma-1.1-7b-it-Q6_K.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q6_K.gguf) | Q6_K | 7.01GB | Very high quality, near perfect, *recommended*. |
46
+ | [codegemma-1.1-7b-it-Q5_K_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q5_K_M.gguf) | Q5_K_M | 6.14GB | High quality, *recommended*. |
47
+ | [codegemma-1.1-7b-it-Q5_K_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.98GB | High quality, *recommended*. |
48
+ | [codegemma-1.1-7b-it-Q4_K_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q4_K_M.gguf) | Q4_K_M | 5.32GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
49
+ | [codegemma-1.1-7b-it-Q4_K_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q4_K_S.gguf) | Q4_K_S | 5.04GB | Slightly lower quality with more space savings, *recommended*. |
50
+ | [codegemma-1.1-7b-it-IQ4_NL.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ4_NL.gguf) | IQ4_NL | 5.01GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
51
+ | [codegemma-1.1-7b-it-IQ4_XS.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ4_XS.gguf) | IQ4_XS | 4.76GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
52
+ | [codegemma-1.1-7b-it-Q3_K_L.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.70GB | Lower quality but usable, good for low RAM availability. |
53
+ | [codegemma-1.1-7b-it-Q3_K_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.36GB | Even lower quality. |
54
+ | [codegemma-1.1-7b-it-IQ3_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ3_M.gguf) | IQ3_M | 4.10GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
55
+ | [codegemma-1.1-7b-it-IQ3_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ3_S.gguf) | IQ3_S | 3.98GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
56
+ | [codegemma-1.1-7b-it-Q3_K_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.98GB | Low quality, not recommended. |
57
+ | [codegemma-1.1-7b-it-IQ3_XS.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ3_XS.gguf) | IQ3_XS | 3.80GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
58
+ | [codegemma-1.1-7b-it-IQ3_XXS.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ3_XXS.gguf) | IQ3_XXS | 3.48GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
59
+ | [codegemma-1.1-7b-it-Q2_K.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-Q2_K.gguf) | Q2_K | 3.48GB | Very low quality but surprisingly usable. |
60
+ | [codegemma-1.1-7b-it-IQ2_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ2_M.gguf) | IQ2_M | 3.13GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
61
+ | [codegemma-1.1-7b-it-IQ2_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ2_S.gguf) | IQ2_S | 2.91GB | Very low quality, uses SOTA techniques to be usable. |
62
+ | [codegemma-1.1-7b-it-IQ2_XS.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ2_XS.gguf) | IQ2_XS | 2.81GB | Very low quality, uses SOTA techniques to be usable. |
63
+ | [codegemma-1.1-7b-it-IQ2_XXS.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ2_XXS.gguf) | IQ2_XXS | 2.58GB | Lower quality, uses SOTA techniques to be usable. |
64
+ | [codegemma-1.1-7b-it-IQ1_M.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ1_M.gguf) | IQ1_M | 2.32GB | Extremely low quality, *not* recommended. |
65
+ | [codegemma-1.1-7b-it-IQ1_S.gguf](https://huggingface.co/bartowski/codegemma-1.1-7b-it-GGUF/blob/main/codegemma-1.1-7b-it-IQ1_S.gguf) | IQ1_S | 2.16GB | Extremely low quality, *not* recommended. |
66
+
67
+ ## Downloading using huggingface-cli
68
+
69
+ First, make sure you have hugginface-cli installed:
70
+
71
+ ```
72
+ pip install -U "huggingface_hub[cli]"
73
+ ```
74
+
75
+ Then, you can target the specific file you want:
76
+
77
+ ```
78
+ huggingface-cli download bartowski/codegemma-1.1-7b-it-GGUF --include "codegemma-1.1-7b-it-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False
79
+ ```
80
+
81
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
82
+
83
+ ```
84
+ huggingface-cli download bartowski/codegemma-1.1-7b-it-GGUF --include "codegemma-1.1-7b-it-Q8_0.gguf/*" --local-dir codegemma-1.1-7b-it-Q8_0 --local-dir-use-symlinks False
85
+ ```
86
+
87
+ You can either specify a new local-dir (codegemma-1.1-7b-it-Q8_0) or download them all in place (./)
88
+
89
+ ## Which file should I choose?
90
+
91
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
92
+
93
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
94
+
95
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
96
+
97
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
98
+
99
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
100
+
101
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
102
+
103
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
104
+
105
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
106
+
107
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
108
+
109
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
110
+
111
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
112
+
113
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
codegemma-1.1-7b-it-IQ1_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9018908b3f1dd68725a2ec6abe56f5495ebb373d660f33c9643af44c5cd429
3
+ size 2320034624
codegemma-1.1-7b-it-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92aa1888e62796aee55c71c1836616cc427dd507cab79fb5c568b1bef735cefa
3
+ size 2160192320
codegemma-1.1-7b-it-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98ff9d1fb44ce5b5d4f6989b2b97a1a4d9fb341585f6a3710176d30a1ca462e2
3
+ size 3132025664
codegemma-1.1-7b-it-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4411ca3bf3c19196b04a7808cec5c8803d530bd4f937224a5d67b12c2f294f5c
3
+ size 2918902592
codegemma-1.1-7b-it-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cde62000132c81846a2f3dd2ca712969f63bc4f8f53e1fbe887b13e6cb3932c4
3
+ size 2810571584
codegemma-1.1-7b-it-IQ2_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00c41b21a73353da34434837d4842738669d6fcd471b394898f73daaedff6821
3
+ size 2586438464
codegemma-1.1-7b-it-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d40d5c65e6cb72190f287a92cfa28265f4c2b90bc7cf6b806e8c608865346c6
3
+ size 4106070848
codegemma-1.1-7b-it-IQ3_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abcc0b623ba3acc2cec46ee6aa6a603b324df1df9d85e4ccffaf1f1c0e31923a
3
+ size 3982404416
codegemma-1.1-7b-it-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b54cb9e0e15900d729f970a8c7f838d4279022c41e3411bb03816e3610dd41b
3
+ size 3800738624
codegemma-1.1-7b-it-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66f212e52f7a672e942285ddb5865bea8a21c96c65b2af478cbd037fd90dad8e
3
+ size 3487099712
codegemma-1.1-7b-it-IQ4_NL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7567b3f57bf5adb428c6ac6a5756533020cdc93296f761c672d0a4b360cabbd
3
+ size 5011843904
codegemma-1.1-7b-it-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05777c8ed0ad838d49ac2a6f6334642628375d11fa467f6cd60a00a373a53fe0
3
+ size 4769622848
codegemma-1.1-7b-it-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d610bb8df194fa31fc960bddda23fbb58ceb4a9dec116bdfaeef4f5333a091
3
+ size 3481447232
codegemma-1.1-7b-it-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1e24070eda43c1bcc0440630426088aa9d923178f98fb3268622d9bfa944a36
3
+ size 4709067584
codegemma-1.1-7b-it-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:512fb9bc871a0ca9dc0378f949fb7ec508d550888c494e2c3345884a686ce5af
3
+ size 4369328960
codegemma-1.1-7b-it-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b6e6c5dcf42f2208dff549190061c528e0a661d1b5d5c6492c2c449215da23
3
+ size 3982404416
codegemma-1.1-7b-it-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2007801966090d6cda7e6fa5c43922a49be44f99a3c2fa265365defae242a3de
3
+ size 5329759040
codegemma-1.1-7b-it-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f83bef5168950cf1b788229b82384b60073e355544bbfc608810b93f18c8459b
3
+ size 5046446912
codegemma-1.1-7b-it-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39f4d6e26a133a1a9d5cd59f1167507eb029dca519ad7e5ba9ffe87d526c3732
3
+ size 6144502592
codegemma-1.1-7b-it-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb38614173c2e5f5ec373740fb170a34e8c5fb883237d1e676f899d799ea137c
3
+ size 5980728128
codegemma-1.1-7b-it-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c06b00497958f550ae9b509d8b1d29953c19ba3dbf5f852578477c7bdef9aeb7
3
+ size 7010167616
codegemma-1.1-7b-it-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c941ffbc89ae7eeb1351d10f240c009b191ec581e041703e3506611d7f15491b
3
+ size 9077844800
codegemma-1.1-7b-it.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9622ab43c814822dbcf028f90131465a727f146659d2886581b60f31a314194d
3
+ size 4938082