bartowski commited on
Commit
ffd4dfc
·
verified ·
1 Parent(s): f81af96

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +253 -45
README.md CHANGED
@@ -18,76 +18,284 @@ inference:
18
  license: gemma
19
  license_link: https://ai.google.dev/gemma/terms
20
  quantized_by: bartowski
 
 
 
 
 
 
 
 
 
21
  ---
22
 
23
- ## Llamacpp Quantizations of codegemma-7b-it
24
 
25
- Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2589">b2589</a> for quantization.
26
 
27
- Original model: https://huggingface.co/google/codegemma-7b-it
 
 
28
 
29
- All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
 
 
30
 
31
- ## Prompt format
 
 
 
 
32
 
33
  ```
34
- <bos><start_of_turn>user
35
  {prompt}<end_of_turn>
36
  <start_of_turn>model
37
-
38
  ```
39
 
40
  Note that this model does not support a System prompt.
41
 
42
- ## Download a file (not the whole branch) from below:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- | Filename | Quant type | File Size | Description |
45
- | -------- | ---------- | --------- | ----------- |
46
- | [codegemma-7b-it-Q8_0.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q8_0.gguf) | Q8_0 | 9.07GB | Extremely high quality, generally unneeded but max available quant. |
47
- | [codegemma-7b-it-Q6_K.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q6_K.gguf) | Q6_K | 7.01GB | Very high quality, near perfect, *recommended*. |
48
- | [codegemma-7b-it-Q5_K_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q5_K_M.gguf) | Q5_K_M | 6.14GB | High quality, *recommended*. |
49
- | [codegemma-7b-it-Q5_K_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.98GB | High quality, *recommended*. |
50
- | [codegemma-7b-it-Q4_K_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q4_K_M.gguf) | Q4_K_M | 5.32GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
51
- | [codegemma-7b-it-Q4_K_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q4_K_S.gguf) | Q4_K_S | 5.04GB | Slightly lower quality with more space savings, *recommended*. |
52
- | [codegemma-7b-it-IQ4_NL.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ4_NL.gguf) | IQ4_NL | 5.01GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
53
- | [codegemma-7b-it-IQ4_XS.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ4_XS.gguf) | IQ4_XS | 4.76GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
54
- | [codegemma-7b-it-Q3_K_L.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.70GB | Lower quality but usable, good for low RAM availability. |
55
- | [codegemma-7b-it-Q3_K_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.36GB | Even lower quality. |
56
- | [codegemma-7b-it-IQ3_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ3_M.gguf) | IQ3_M | 4.10GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
57
- | [codegemma-7b-it-IQ3_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ3_S.gguf) | IQ3_S | 3.98GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
58
- | [codegemma-7b-it-Q3_K_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.98GB | Low quality, not recommended. |
59
- | [codegemma-7b-it-IQ3_XS.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ3_XS.gguf) | IQ3_XS | 3.80GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
60
- | [codegemma-7b-it-IQ3_XXS.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ3_XXS.gguf) | IQ3_XXS | 3.48GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
61
- | [codegemma-7b-it-Q2_K.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q2_K.gguf) | Q2_K | 3.48GB | Very low quality but surprisingly usable. |
62
- | [codegemma-7b-it-IQ2_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ2_M.gguf) | IQ2_M | 3.13GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
63
- | [codegemma-7b-it-IQ2_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ2_S.gguf) | IQ2_S | 2.91GB | Very low quality, uses SOTA techniques to be usable. |
64
- | [codegemma-7b-it-IQ2_XS.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ2_XS.gguf) | IQ2_XS | 2.81GB | Very low quality, uses SOTA techniques to be usable. |
65
- | [codegemma-7b-it-IQ2_XXS.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ2_XXS.gguf) | IQ2_XXS | 2.58GB | Lower quality, uses SOTA techniques to be usable. |
66
- | [codegemma-7b-it-IQ1_M.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ1_M.gguf) | IQ1_M | 2.32GB | Extremely low quality, *not* recommended. |
67
- | [codegemma-7b-it-IQ1_S.gguf](https://huggingface.co/bartowski/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-IQ1_S.gguf) | IQ1_S | 2.16GB | Extremely low quality, *not* recommended. |
68
 
69
- ## Which file should I choose?
70
 
71
- A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
 
 
 
 
 
 
 
 
 
 
72
 
73
- The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
76
 
77
- If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
78
 
79
- Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
80
 
81
- If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
82
 
83
- If you want to get more into the weeds, you can check out this extremely useful feature chart:
84
 
85
- [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
86
 
87
- But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
88
 
89
- These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
90
 
91
- The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
92
 
93
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
18
  license: gemma
19
  license_link: https://ai.google.dev/gemma/terms
20
  quantized_by: bartowski
21
+ lm_studio:
22
+ param_count: 8b
23
+ use_case: coding
24
+ release_date: 09-04-2024
25
+ model_creator: google
26
+ prompt_template: Google Gemma Instruct
27
+ system_prompt: none
28
+ base_model: gemma
29
+ original_repo: google/codegemma-7b-it
30
  ---
31
 
32
+ ## 💫 Community Model> CodeGemma 7b Instruct by Google
33
 
34
+ *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
35
 
36
+ **Model creator:** [Google](https://huggingface.co/google)<br>
37
+ **Original model**: [google/codegemma-7b-it](https://huggingface.co/google/codegemma-7b-it)<br>
38
+ **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b2589](https://github.com/ggerganov/llama.cpp/releases/tag/b2589)<br>
39
 
40
+ ## Model Summary:
41
+ CodeGemma 7b Instruct is the first in a series of coding models released by Google. As an instruct model, it specializes in being asked coding related questions, but can also function as an autocomplete/fill-in-middle model for tools like co-pilot.<br>
42
+ This model is perfect for general coding questions or code generation.
43
 
44
+ ## Prompt Template:
45
+
46
+ Choose the 'Google Gemma Instruct' preset in your LM Studio.
47
+
48
+ Under the hood, the model will see a prompt that's formatted like so:
49
 
50
  ```
51
+ <start_of_turn>user
52
  {prompt}<end_of_turn>
53
  <start_of_turn>model
 
54
  ```
55
 
56
  Note that this model does not support a System prompt.
57
 
58
+ ## Use case and examples
59
+
60
+ This model should be used for coding purposes.
61
+
62
+ ### Coding 1
63
+
64
+ ```
65
+ <start_of_turn>user
66
+ Write a quicksort in C++<end_of_turn>
67
+ <start_of_turn>model
68
+ #include <iostream>
69
+
70
+ using namespace std;
71
+
72
+ int partition(int arr[], int low, int high) {
73
+ int pivot = arr[high];
74
+ int i = (low - 1);
75
+
76
+ for (int j = low; j <= high - 1; j++) {
77
+ if (arr[j] <= pivot) {
78
+ i++;
79
+ swap(arr[i], arr[j]);
80
+ }
81
+ }
82
+ swap(arr[i + 1], arr[high]);
83
+ return (i + 1);
84
+ }
85
+
86
+ void quickSort(int arr[], int low, int high) {
87
+ if (low < high) {
88
+ int pi = partition(arr, low, high);
89
+
90
+ quickSort(arr, low, pi - 1);
91
+ quickSort(arr, pi + 1, high);
92
+ }
93
+ }
94
+
95
+ int main() {
96
+ int arr[] = {10, 7, 8, 9, 1, 5};
97
+ int n = sizeof(arr) / sizeof(arr[0]);
98
+
99
+ quickSort(arr, 0, n - 1);
100
+
101
+ cout << "Sorted array: ";
102
+ for (int i = 0; i < n; i++) {
103
+ cout << arr[i] << " ";
104
+ }
105
+
106
+ return 0;
107
+ }
108
+ <end_of_turn>
109
+ ```
110
+
111
+ ### Coding 2
112
+
113
+ ```
114
+ <start_of_turn>user
115
+ Write a merge sort in java<end_of_turn>
116
+ <start_of_turn>model
117
+
118
+ public class MergeSort {
119
+
120
+ public static void mergeSort(int[] arr) {
121
+ int n = arr.length;
122
+ if (n < 2) {
123
+ return;
124
+ }
125
+ int mid = n / 2;
126
+ int[] left = new int[mid];
127
+ int[] right = new int[n - mid];
128
+ for (int i = 0; i < mid; i++) {
129
+ left[i] = arr[i];
130
+ }
131
+ for (int i = mid; i < n; i++) {
132
+ right[i - mid] = arr[i];
133
+ }
134
+ mergeSort(left);
135
+ mergeSort(right);
136
+ merge(arr, left, right);
137
+ }
138
+
139
+ public static void merge(int[] arr, int[] left, int[] right) {
140
+ int i = 0;
141
+ int j = 0;
142
+ int k = 0;
143
+ while (i < left.length && j < right.length) {
144
+ if (left[i] <= right[j]) {
145
+ arr[k] = left[i];
146
+ i++;
147
+ } else {
148
+ arr[k] = right[j];
149
+ j++;
150
+ }
151
+ k++;
152
+ }
153
+ while (i < left.length) {
154
+ arr[k] = left[i];
155
+ i++;
156
+ k++;
157
+ }
158
+ while (j < right.length) {
159
+ arr[k] = right[j];
160
+ j++;
161
+ k++;
162
+ }
163
+ }
164
+
165
+ public static void main(String[] args) {
166
+ int[] arr = {5, 2, 4, 6, 1, 3};
167
+ mergeSort(arr);
168
+ for (int i = 0; i < arr.length; i++) {
169
+ System.out.print(arr[i] + " ");
170
+ }
171
+ }
172
+ }
173
+ <end_of_turn>
174
+ ```
175
+
176
+ ### Coding 3
177
+
178
+ ```
179
+ <bos><start_of_turn>user
180
+ How do you write a for loop in react?<end_of_turn>
181
+ <start_of_turn>model
182
+ The syntax for a for loop in React is:
183
+
184
+ for (let i = 0; i < array.length; i++) {
185
+ // Code to be executed for each iteration
186
+ }
187
+
188
+ Where:
189
 
190
+ * `i` is the loop variable, which starts at 0 and increments by 1 with each iteration.
191
+ * `array` is the array you want to iterate over.
192
+ * `array.length` is the length of the array.
193
+ * `// Code to be executed for each iteration` is the code you want to execute for each iteration of the loop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
 
195
+ Here is an example of how to use a for loop to render a list of items:
196
 
197
+ const items = ["item 1", "item 2", "item 3"];
198
+
199
+ const listItems = items.map((item, index) => (
200
+ <li key={index}>{item}</li>
201
+ ));
202
+
203
+ return (
204
+ <ul>
205
+ {listItems}
206
+ </ul>
207
+ );
208
 
209
+ In this example, the `map()` method is used to create a new array of `li` elements. The `key` prop is used to uniquely identify each `li` element.
210
+
211
+ Here are some other things to keep in mind when using for loops in React:
212
+
213
+ * You can use any variable name for the loop variable.
214
+ * You can use any condition for the loop condition.
215
+ * You can use any code inside the loop.
216
+ * You can use nested for loops.
217
+
218
+ Here are some resources that you may find helpful:
219
+
220
+ * **For Loop in JavaScript:** https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for
221
+ * **Map() method:** https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
222
+ * **Key prop:** https://reactjs.org/docs/lists-and-keys.html#keys<end_of_turn>
223
+ ```
224
+
225
+ ## Coding related question
226
+
227
+ ```
228
+ <bos><start_of_turn>user
229
+ When would you use an array versus a dictionary?<end_of_turn>
230
+ <start_of_turn>model
231
+ **Arrays** and **dictionaries** are both data structures used in computer programming, but they have different purposes and characteristics.
232
+
233
+ **Arrays** are ordered collections of elements of the same data type. They are indexed by their position in the array, starting from 0. Arrays are ideal for storing and accessing data in a sequential manner.
234
+
235
+ **Dictionaries**, on the other hand, are unordered collections of key-value pairs. Keys are unique identifiers that are used to access the corresponding values. Dictionaries are ideal for storing and accessing data based on a specific key.
236
+
237
+ **When to use an array:**
238
+
239
+ * When you need to store a fixed number of elements of the same data type.
240
+ * When you need to access elements by their position in the array.
241
+ * When you need to iterate over the elements in a specific order.
242
+
243
+ **When to use a dictionary:**
244
+
245
+ * When you need to store a variable number of elements of different data types.
246
+ * When you need to access elements by their key.
247
+ * When you need to quickly check if a key exists in the dictionary.
248
+
249
+ **Example:**
250
+
251
+ **Array:**
252
+
253
+ # Create an array of integers
254
+ numbers = [1, 2, 3, 4, 5]
255
+
256
+ # Access the first element
257
+ print(numbers[0]) # Output: 1
258
+
259
+ # Iterate over the elements
260
+ for number in numbers:
261
+ print(number)
262
+
263
+ **Dictionary:**
264
+
265
+ # Create a dictionary of names and ages
266
+ names_ages = {"John": 30, "Jane": 25, "Peter": 40}
267
+
268
+ # Access the age of John
269
+ print(names_ages["John"]) # Output: 30
270
+
271
+ # Check if a key exists
272
+ if "Mary" in names_ages:
273
+ print("Mary is in the dictionary")
274
+ else:
275
+ print("Mary is not in the dictionary")
276
+
277
+ **In summary:**
278
+
279
+ * Use an array when you need to store a fixed number of elements of the same data type and access them by their position.
280
+ * Use a dictionary when you need to store a variable number of elements of different data types and access them by their key.<end_of_turn>
281
+ ```
282
 
283
+ ## Technical Details
284
 
285
+ CodeGemma is based on the Gemma 7b model with additional training on web documents, mathematics, and code, with a mixture of 80% code and 20% natural language.
286
 
287
+ The code used is based on publicly avaialble code repositories.
288
 
289
+ The instruct version was further trained on mathematical datasets in an attempt to improve its mathematical reasoning capabilities, as well as synthetic code generation combined with a second LLM for evaluation and reinforcement feedback.
290
 
291
+ Additional details can be found on Google's official report PDF [here](https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf)
292
 
293
+ ## Special thanks
294
 
295
+ 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
296
 
297
+ 🙏 Special thanks to [Kalomaze](https://github.com/kalomaze) for his dataset (linked [here](https://github.com/ggerganov/llama.cpp/discussions/5263)) that was used for calculating the imatrix for these quants, which improves the overall quality!
298
 
299
+ ## Disclaimers
300
 
301
+ LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.