lobrien001 commited on
Commit
05a93e9
·
verified ·
1 Parent(s): 5b34a36

Model save

Browse files
Files changed (3) hide show
  1. README.md +69 -37
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.4998
24
- - Precision: 0.8686
25
- - Recall: 0.8991
26
- - F1: 0.8836
27
- - Accuracy: 0.8638
28
 
29
  ## Model description
30
 
@@ -55,38 +55,70 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 0.37 | 100 | 0.5660 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
59
- | No log | 0.75 | 200 | 0.5733 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
60
- | No log | 1.12 | 300 | 0.5599 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
61
- | No log | 1.49 | 400 | 0.5609 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
62
- | 0.6419 | 1.87 | 500 | 0.5470 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
63
- | 0.6419 | 2.24 | 600 | 0.5481 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
64
- | 0.6419 | 2.61 | 700 | 0.5178 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
65
- | 0.6419 | 2.99 | 800 | 0.5212 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
66
- | 0.6419 | 3.36 | 900 | 0.5148 | 0.8604 | 0.9039 | 0.8816 | 0.8601 |
67
- | 0.5913 | 3.73 | 1000 | 0.5056 | 0.8607 | 0.9058 | 0.8827 | 0.8603 |
68
- | 0.5913 | 4.1 | 1100 | 0.5169 | 0.8595 | 0.9019 | 0.8802 | 0.8560 |
69
- | 0.5913 | 4.48 | 1200 | 0.4942 | 0.8606 | 0.9049 | 0.8822 | 0.8599 |
70
- | 0.5913 | 4.85 | 1300 | 0.5351 | 0.8588 | 0.9047 | 0.8812 | 0.8578 |
71
- | 0.5913 | 5.22 | 1400 | 0.4681 | 0.8671 | 0.8997 | 0.8831 | 0.8611 |
72
- | 0.5377 | 5.6 | 1500 | 0.5056 | 0.8713 | 0.8828 | 0.8771 | 0.8519 |
73
- | 0.5377 | 5.97 | 1600 | 0.4747 | 0.8622 | 0.9008 | 0.8811 | 0.8599 |
74
- | 0.5377 | 6.34 | 1700 | 0.4828 | 0.8661 | 0.9017 | 0.8835 | 0.8615 |
75
- | 0.5377 | 6.72 | 1800 | 0.4807 | 0.8737 | 0.8841 | 0.8789 | 0.8554 |
76
- | 0.5377 | 7.09 | 1900 | 0.4756 | 0.8686 | 0.8900 | 0.8791 | 0.8560 |
77
- | 0.4764 | 7.46 | 2000 | 0.5021 | 0.8719 | 0.8828 | 0.8773 | 0.8576 |
78
- | 0.4764 | 7.84 | 2100 | 0.4812 | 0.8690 | 0.8807 | 0.8748 | 0.8500 |
79
- | 0.4764 | 8.21 | 2200 | 0.4949 | 0.8633 | 0.8781 | 0.8706 | 0.8482 |
80
- | 0.4764 | 8.58 | 2300 | 0.5022 | 0.8694 | 0.8805 | 0.8749 | 0.8527 |
81
- | 0.4764 | 8.96 | 2400 | 0.4998 | 0.8686 | 0.8991 | 0.8836 | 0.8638 |
82
- | 0.429 | 9.33 | 2500 | 0.5103 | 0.8683 | 0.8811 | 0.8747 | 0.8527 |
83
- | 0.429 | 9.7 | 2600 | 0.5269 | 0.8690 | 0.8735 | 0.8713 | 0.8500 |
84
- | 0.429 | 10.07 | 2700 | 0.5303 | 0.8662 | 0.8677 | 0.8669 | 0.8437 |
85
- | 0.429 | 10.45 | 2800 | 0.5402 | 0.8639 | 0.8703 | 0.8671 | 0.8451 |
86
- | 0.429 | 10.82 | 2900 | 0.5407 | 0.8664 | 0.8774 | 0.8719 | 0.8500 |
87
- | 0.3833 | 11.19 | 3000 | 0.5413 | 0.8654 | 0.8744 | 0.8699 | 0.8474 |
88
- | 0.3833 | 11.57 | 3100 | 0.5447 | 0.8647 | 0.8718 | 0.8682 | 0.8457 |
89
- | 0.3833 | 11.94 | 3200 | 0.5420 | 0.8632 | 0.8707 | 0.8670 | 0.8457 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.5055
24
+ - Precision: 0.8737
25
+ - Recall: 0.8677
26
+ - F1: 0.8707
27
+ - Accuracy: 0.8449
28
 
29
  ## Model description
30
 
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 0.19 | 50 | 0.5675 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
59
+ | No log | 0.37 | 100 | 0.5571 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
60
+ | No log | 0.56 | 150 | 0.5541 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
61
+ | No log | 0.75 | 200 | 0.5682 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
62
+ | No log | 0.93 | 250 | 0.5845 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
63
+ | No log | 1.12 | 300 | 0.5533 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
64
+ | No log | 1.31 | 350 | 0.5940 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
65
+ | No log | 1.49 | 400 | 0.5553 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
66
+ | No log | 1.68 | 450 | 0.5661 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
67
+ | 0.6392 | 1.87 | 500 | 0.5435 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
68
+ | 0.6392 | 2.05 | 550 | 0.5300 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
69
+ | 0.6392 | 2.24 | 600 | 0.5522 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
70
+ | 0.6392 | 2.43 | 650 | 0.5155 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
71
+ | 0.6392 | 2.61 | 700 | 0.5037 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
72
+ | 0.6392 | 2.8 | 750 | 0.4923 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
73
+ | 0.6392 | 2.99 | 800 | 0.4897 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
74
+ | 0.6392 | 3.17 | 850 | 0.5021 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
75
+ | 0.6392 | 3.36 | 900 | 0.5122 | 0.8574 | 0.9049 | 0.8805 | 0.8574 |
76
+ | 0.6392 | 3.54 | 950 | 0.4987 | 0.8575 | 0.9004 | 0.8784 | 0.8560 |
77
+ | 0.5724 | 3.73 | 1000 | 0.4861 | 0.8587 | 0.8971 | 0.8775 | 0.8541 |
78
+ | 0.5724 | 3.92 | 1050 | 0.4788 | 0.8607 | 0.9019 | 0.8808 | 0.8580 |
79
+ | 0.5724 | 4.1 | 1100 | 0.4989 | 0.8634 | 0.8826 | 0.8729 | 0.8459 |
80
+ | 0.5724 | 4.29 | 1150 | 0.4760 | 0.8653 | 0.8976 | 0.8812 | 0.8572 |
81
+ | 0.5724 | 4.48 | 1200 | 0.4699 | 0.8659 | 0.8835 | 0.8746 | 0.8482 |
82
+ | 0.5724 | 4.66 | 1250 | 0.4865 | 0.8729 | 0.8822 | 0.8775 | 0.8519 |
83
+ | 0.5724 | 4.85 | 1300 | 0.4763 | 0.8626 | 0.9023 | 0.8820 | 0.8586 |
84
+ | 0.5724 | 5.04 | 1350 | 0.4676 | 0.8653 | 0.8941 | 0.8794 | 0.8564 |
85
+ | 0.5724 | 5.22 | 1400 | 0.4979 | 0.8672 | 0.8850 | 0.8760 | 0.8494 |
86
+ | 0.5724 | 5.41 | 1450 | 0.4749 | 0.8648 | 0.8965 | 0.8804 | 0.8566 |
87
+ | 0.5092 | 5.6 | 1500 | 0.5003 | 0.8686 | 0.8720 | 0.8703 | 0.8410 |
88
+ | 0.5092 | 5.78 | 1550 | 0.4635 | 0.8713 | 0.8872 | 0.8792 | 0.8547 |
89
+ | 0.5092 | 5.97 | 1600 | 0.4615 | 0.8653 | 0.8928 | 0.8788 | 0.8543 |
90
+ | 0.5092 | 6.16 | 1650 | 0.4785 | 0.8677 | 0.8937 | 0.8805 | 0.8556 |
91
+ | 0.5092 | 6.34 | 1700 | 0.4856 | 0.8728 | 0.8813 | 0.8771 | 0.8535 |
92
+ | 0.5092 | 6.53 | 1750 | 0.4681 | 0.8695 | 0.8917 | 0.8805 | 0.8574 |
93
+ | 0.5092 | 6.72 | 1800 | 0.4633 | 0.8683 | 0.8950 | 0.8814 | 0.8586 |
94
+ | 0.5092 | 6.9 | 1850 | 0.4887 | 0.8787 | 0.8655 | 0.8720 | 0.8432 |
95
+ | 0.5092 | 7.09 | 1900 | 0.4807 | 0.8706 | 0.8759 | 0.8733 | 0.8476 |
96
+ | 0.5092 | 7.28 | 1950 | 0.4613 | 0.8723 | 0.8935 | 0.8828 | 0.8607 |
97
+ | 0.4572 | 7.46 | 2000 | 0.4582 | 0.8729 | 0.8861 | 0.8794 | 0.8545 |
98
+ | 0.4572 | 7.65 | 2050 | 0.4784 | 0.8794 | 0.8681 | 0.8737 | 0.8476 |
99
+ | 0.4572 | 7.84 | 2100 | 0.4749 | 0.8710 | 0.8798 | 0.8754 | 0.8504 |
100
+ | 0.4572 | 8.02 | 2150 | 0.4755 | 0.8721 | 0.8828 | 0.8774 | 0.8531 |
101
+ | 0.4572 | 8.21 | 2200 | 0.4875 | 0.8736 | 0.8668 | 0.8702 | 0.8463 |
102
+ | 0.4572 | 8.4 | 2250 | 0.4763 | 0.8807 | 0.8664 | 0.8735 | 0.8480 |
103
+ | 0.4572 | 8.58 | 2300 | 0.4795 | 0.8745 | 0.8644 | 0.8694 | 0.8445 |
104
+ | 0.4572 | 8.77 | 2350 | 0.4822 | 0.8739 | 0.8616 | 0.8677 | 0.8385 |
105
+ | 0.4572 | 8.96 | 2400 | 0.4824 | 0.8761 | 0.8774 | 0.8768 | 0.8510 |
106
+ | 0.4572 | 9.14 | 2450 | 0.4818 | 0.8748 | 0.8608 | 0.8677 | 0.8400 |
107
+ | 0.4061 | 9.33 | 2500 | 0.4814 | 0.8795 | 0.8712 | 0.8753 | 0.8488 |
108
+ | 0.4061 | 9.51 | 2550 | 0.4846 | 0.8754 | 0.8796 | 0.8775 | 0.8510 |
109
+ | 0.4061 | 9.7 | 2600 | 0.5112 | 0.8758 | 0.8718 | 0.8738 | 0.8461 |
110
+ | 0.4061 | 9.89 | 2650 | 0.5002 | 0.8689 | 0.8701 | 0.8695 | 0.8461 |
111
+ | 0.4061 | 10.07 | 2700 | 0.5163 | 0.8769 | 0.8605 | 0.8686 | 0.8391 |
112
+ | 0.4061 | 10.26 | 2750 | 0.4947 | 0.8733 | 0.8774 | 0.8754 | 0.8510 |
113
+ | 0.4061 | 10.45 | 2800 | 0.4895 | 0.8795 | 0.8850 | 0.8822 | 0.8599 |
114
+ | 0.4061 | 10.63 | 2850 | 0.4984 | 0.8737 | 0.8705 | 0.8721 | 0.8457 |
115
+ | 0.4061 | 10.82 | 2900 | 0.4952 | 0.8733 | 0.8779 | 0.8756 | 0.8521 |
116
+ | 0.4061 | 11.01 | 2950 | 0.5012 | 0.8720 | 0.8644 | 0.8682 | 0.8422 |
117
+ | 0.3677 | 11.19 | 3000 | 0.4994 | 0.8717 | 0.8751 | 0.8734 | 0.8486 |
118
+ | 0.3677 | 11.38 | 3050 | 0.5002 | 0.875 | 0.8777 | 0.8763 | 0.8529 |
119
+ | 0.3677 | 11.57 | 3100 | 0.5039 | 0.8724 | 0.8735 | 0.8730 | 0.8490 |
120
+ | 0.3677 | 11.75 | 3150 | 0.5094 | 0.8729 | 0.8642 | 0.8686 | 0.8416 |
121
+ | 0.3677 | 11.94 | 3200 | 0.5059 | 0.8731 | 0.8673 | 0.8702 | 0.8443 |
122
 
123
 
124
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53ae257db08622ac4fc608a5556b0dcc899aa1044b625ee4d8f0c62a4dbed0cc
3
  size 496256392
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23d713cb698b695618566a51172433b5dab5c238026e8eadf1599635779e3c24
3
  size 496256392
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4364cef69dd966fb07f15e64551717d249ed6c580c94d8d3755f70103ca165ec
3
  size 4728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e636ef4801791da0079e9997d03bc13d35fb033e03ec6ef6e76590a1fada56
3
  size 4728