Phi-3.5-mini-instruct-mlx-int4 / sample_finetune.py
lokinfey's picture
init models
fa00463 verified
import sys
import logging
import datasets
from datasets import load_dataset
from peft import LoraConfig
import torch
import transformers
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
"""
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
script can be run on V100 or later generation GPUs. Here are some suggestions on
futher reducing memory consumption:
- reduce batch size
- decrease lora dimension
- restrict lora target modules
Please follow these steps to run the script:
1. Install dependencies:
conda install -c conda-forge accelerate
pip3 install -i https://pypi.org/simple/ bitsandbytes
pip3 install peft transformers trl datasets
pip3 install deepspeed
2. Setup accelerate and deepspeed config based on the machine used:
accelerate config
Here is a sample config for deepspeed zero3:
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 1
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
3. check accelerate config:
accelerate env
4. Run the code:
accelerate launch sample_finetune.py
"""
logger = logging.getLogger(__name__)
###################
# Hyper-parameters
###################
training_config = {
"bf16": True,
"do_eval": False,
"learning_rate": 5.0e-06,
"log_level": "info",
"logging_steps": 20,
"logging_strategy": "steps",
"lr_scheduler_type": "cosine",
"num_train_epochs": 1,
"max_steps": -1,
"output_dir": "./checkpoint_dir",
"overwrite_output_dir": True,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"remove_unused_columns": True,
"save_steps": 100,
"save_total_limit": 1,
"seed": 0,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs":{"use_reentrant": False},
"gradient_accumulation_steps": 1,
"warmup_ratio": 0.2,
}
peft_config = {
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0.05,
"bias": "none",
"task_type": "CAUSAL_LM",
"target_modules": "all-linear",
"modules_to_save": None,
}
train_conf = TrainingArguments(**training_config)
peft_conf = LoraConfig(**peft_config)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = train_conf.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
)
logger.info(f"Training/evaluation parameters {train_conf}")
logger.info(f"PEFT parameters {peft_conf}")
################
# Model Loading
################
checkpoint_path = "microsoft/Phi-3.5-mini-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
torch_dtype=torch.bfloat16,
device_map=None
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.model_max_length = 2048
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = 'right'
##################
# Data Processing
##################
def apply_chat_template(
example,
tokenizer,
):
messages = example["messages"]
example["text"] = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False)
return example
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
train_dataset = raw_dataset["train_sft"]
test_dataset = raw_dataset["test_sft"]
column_names = list(train_dataset.features)
processed_train_dataset = train_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to train_sft",
)
processed_test_dataset = test_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to test_sft",
)
###########
# Training
###########
trainer = SFTTrainer(
model=model,
args=train_conf,
peft_config=peft_conf,
train_dataset=processed_train_dataset,
eval_dataset=processed_test_dataset,
max_seq_length=2048,
dataset_text_field="text",
tokenizer=tokenizer,
packing=True
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
#############
# Evaluation
#############
tokenizer.padding_side = 'left'
metrics = trainer.evaluate()
metrics["eval_samples"] = len(processed_test_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# ############
# # Save model
# ############
trainer.save_model(train_conf.output_dir)