File size: 8,747 Bytes
645a7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import argparse
import onnx
import os
import requests
import shutil
import subprocess
import sys
import torch

from onnxruntime_genai.models.builder import create_model
from PIL import Image
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM


def build_vision(args):
    # Single image:
    prompt = f"{user_prompt}<|image_1|>\nWhat is shown in this image?{prompt_suffix}{assistant_prompt}"
    url = "https://www.ilankelman.org/stopsigns/australia.jpg"
    image = Image.open(requests.get(url, stream=True).raw)
    inputs = processor(prompt, image, return_tensors="pt").to(args.execution_provider)
    inputs["pixel_values"] = inputs["pixel_values"].to(args.precision)

    # TorchScript export
    dummy_inputs = (
        inputs["pixel_values"],   # input_embeds: Optional[torch.FloatTensor] = None,
        inputs["image_sizes"],    # image_sizes: Optional[torch.FloatTensor] = None,
    )
    dynamic_axes = {
        "pixel_values": {0: "num_images", 1: "max_num_crops", 3: "height", 4: "width"},
        "image_sizes": {0: "num_images"},
        "visual_features": {0: "batch_size", 1: "num_img_tokens"},
    }
    filename = "phi-3.5-v-128k-instruct-vision.onnx"

    temp_folder_1 = os.path.join(args.output, "vision_init_export")
    os.makedirs(temp_folder_1, exist_ok=True)

    fpath_1 = os.path.join(temp_folder_1, filename)
    torch.onnx.export(
        model.model.vision_embed_tokens,
        args=dummy_inputs,
        f=fpath_1,
        export_params=True,
        input_names=["pixel_values", "image_sizes"],
        output_names=["visual_features"],
        dynamic_axes=dynamic_axes,
        opset_version=14,
        do_constant_folding=True,
    )

    onnx.checker.check_model(fpath_1)
    onnx.shape_inference.infer_shapes_path(fpath_1)
    onnx_model = onnx.load_model(fpath_1, load_external_data=True)

    temp_folder_2 = os.path.join(args.output, "vision_after_export")
    os.makedirs(temp_folder_2, exist_ok=True)

    fpath_2 = os.path.join(temp_folder_2, filename)
    onnx.save_model(
        onnx_model,
        fpath_2,
        save_as_external_data=True,
        all_tensors_to_one_file=True,
        location=f"{filename}.data",
        size_threshold=0,
        convert_attribute=False,
    )
    shutil.rmtree(temp_folder_1)

    # ORT transformer optimizer
    temp_folder_3 = os.path.join(args.output, "vision_after_opt")
    fpath_3 = os.path.join(temp_folder_3, filename)
    subprocess.run(
        [
            f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
            "--input", fpath_2,
            "--output", fpath_3,
            "--model_type", "clip",
            "--num_heads", str(16),
            "--hidden_size", str(1024),
            "--use_external_data_format",
            "--opt_level", str(0),
        ]
    )
    shutil.rmtree(temp_folder_2)

    # ORT 4-bits quantizer
    fpath_4 = os.path.join(args.output, filename)
    cmd = [
        f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
        "--input_model", fpath_3,
        "--output_model", fpath_4,
        "--block_size", str(32),
    ]
    if args.precision == "fp32": cmd.extend(["--accuracy_level", str(4)])
    subprocess.run(cmd)
    shutil.rmtree(temp_folder_3)

def build_text_embedding(args):
    #########################################
    # Functions/variables from model builder
    #########################################
    from onnx import helper, numpy_helper, TensorProto, external_data_helper, save_model
    import numpy as np
    
    # User inputs
    io_dtype = TensorProto.FLOAT16 if args.precision == torch.float16 else TensorProto.FLOAT
    os.makedirs(args.cache_dir, exist_ok=True)

    # Map TensorProto dtypes
    to_torch_dtype = {
        TensorProto.FLOAT16: torch.float16,
        TensorProto.FLOAT: torch.float32,
    }
    to_numpy_dtype = {
        TensorProto.FLOAT16: np.float16,
        TensorProto.FLOAT: np.float32,
    }

    def make_external_tensor(np_data, name, **kwargs):
        tensor = numpy_helper.from_array(np_data)
        tensor.name = name

        filename = f"{name}.bin"
        external_data_helper.set_external_data(tensor, location=filename)
        with open(os.path.join(args.cache_dir, filename), "wb") as f:
            f.write(tensor.raw_data)
        tensor.ClearField("raw_data")
        tensor.data_location = TensorProto.EXTERNAL

        return tensor

    # Make model
    global model
    embedding = model.model.embed_tokens.weight.to(to_torch_dtype[io_dtype]).detach().cpu().numpy()
    weight_name = "model.embed_tokens.weight"
    embed_weight = make_external_tensor(embedding.astype(to_numpy_dtype[io_dtype]), weight_name)
    model = helper.make_model(
        opset_imports=[helper.make_operatorsetid('', 14), helper.make_operatorsetid('com.microsoft', 1)],
        ir_version=7,
        producer_name="onnxruntime-genai",
        producer_version="0.0.0",
        graph=helper.make_graph(
            name="main_graph",
            inputs=[helper.make_tensor_value_info("input_ids", TensorProto.INT64, shape=["batch_size", "sequence_length"])],
            outputs=[helper.make_tensor_value_info("inputs_embeds", io_dtype, shape=["batch_size", "sequence_length", config.hidden_size])],
            initializer=[embed_weight],
            value_info=[],
            nodes=[helper.make_node('Gather', inputs=[weight_name, 'input_ids'], outputs=['inputs_embeds'], name="/model/embed_tokens/Gather")],
        )
    )

    external_data_helper.load_external_data_for_model(model, args.cache_dir)

    # Delete external data files on disk before re-saving
    for path in os.listdir(args.cache_dir):
        if path.endswith(".bin"):
            os.remove(os.path.join(args.cache_dir, path))

    # Delete temporary cache dir if empty
    if len(os.listdir(args.cache_dir)) == 0:
        os.rmdir(args.cache_dir)

    # Save ONNX model with only one external data file and delete any existing duplicate copies
    filename = "phi-3.5-v-128k-instruct-text-embedding.onnx"
    output_path = os.path.join(args.output, filename)    
    save_model(
        model,
        output_path,
        save_as_external_data=True,
        all_tensors_to_one_file=True,
        location=f"{filename}.data",
        size_threshold=0,
        convert_attribute=False,
    )

def build_text(args):
    # Create ONNX model
    model_name = None
    precision = "int4"
    extra_options = {
        "exclude_embeds": "true",
        "filename": "phi-3.5-v-128k-instruct-text.onnx",
    }
    if args.precision == "fp32": extra_options["int4_accuracy_level"] = 4
    create_model(model_name, args.input, args.output, precision, args.execution_provider, args.cache_dir, **extra_options)

def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-i",
        "--input",
        required=True,
        help="Path to folder on disk containing the Hugging Face config, model, tokenizer, etc.",
    )

    parser.add_argument(
        "-o",
        "--output",
        required=True,
        help="Path to folder to store ONNX model and additional files (e.g. GenAI config, external data files, etc.)",
    )

    parser.add_argument(
        "-p",
        "--precision",
        required=True,
        choices=["fp16", "fp32"],
        help="Precision to export PyTorch components with",
    )

    parser.add_argument(
        "-e",
        "--execution_provider",
        required=True,
        choices=["cpu", "cuda"],
        help="Device to export Phi-3 vision components with",
    )

    parser.add_argument(
        "-c",
        "--cache_dir",
        required=False,
        default=os.path.join('.', 'cache_dir'),
        help="Cache directory for Hugging Face files and temporary ONNX external data files",
    )

    args = parser.parse_args()
    args.precision = torch.float16 if args.precision == "fp16" else torch.float32
    return args

if __name__ == "__main__":
    user_prompt = '<|user|>\n'
    assistant_prompt = '<|assistant|>\n'
    prompt_suffix = "<|end|>\n"

    args = get_args()
    config = AutoConfig.from_pretrained(args.input, trust_remote_code=True)
    processor = AutoProcessor.from_pretrained(args.input, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.input, trust_remote_code=True, torch_dtype=args.precision).to(args.execution_provider)

    # Build model components
    build_vision(args)
    build_text_embedding(args)
    build_text(args)