lombardata commited on
Commit
7224d02
·
verified ·
1 Parent(s): d61ed54

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +220 -145
README.md CHANGED
@@ -1,169 +1,244 @@
 
1
  ---
2
- license: apache-2.0
3
- base_model: facebook/dinov2-giant
 
4
  tags:
 
 
5
  - generated_from_trainer
6
- metrics:
7
- - accuracy
8
  model-index:
9
  - name: DinoVdeau-giant-2024_08_28-batch-size32_epochs150_freeze
10
  results: []
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
 
16
- # DinoVdeau-giant-2024_08_28-batch-size32_epochs150_freeze
17
-
18
- This model is a fine-tuned version of [facebook/dinov2-giant](https://huggingface.co/facebook/dinov2-giant) on the None dataset.
19
- It achieves the following results on the evaluation set:
20
  - Loss: 0.1208
21
  - F1 Micro: 0.8209
22
  - F1 Macro: 0.7101
23
  - Roc Auc: 0.8812
24
  - Accuracy: 0.3080
25
- - Learning Rate: 0.0000
26
 
27
- ## Model description
 
 
 
28
 
29
- More information needed
30
 
31
- ## Intended uses & limitations
32
 
33
- More information needed
 
 
 
 
 
34
 
35
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- More information needed
38
 
39
- ## Training procedure
40
 
41
- ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
- - learning_rate: 0.001
45
- - train_batch_size: 32
46
- - eval_batch_size: 32
47
- - seed: 42
48
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
- - lr_scheduler_type: linear
50
- - num_epochs: 150
51
- - mixed_precision_training: Native AMP
52
-
53
- ### Training results
54
-
55
- | Training Loss | Epoch | Step | Accuracy | F1 Macro | F1 Micro | Validation Loss | Roc Auc | Rate |
56
- |:-------------:|:-----:|:-----:|:--------:|:--------:|:--------:|:---------------:|:-------:|:------:|
57
- | No log | 1.0 | 273 | 0.2121 | 0.5175 | 0.7424 | 0.1744 | 0.8286 | 0.001 |
58
- | 0.2593 | 2.0 | 546 | 0.2477 | 0.5913 | 0.7777 | 0.1514 | 0.8565 | 0.001 |
59
- | 0.2593 | 3.0 | 819 | 0.2387 | 0.6203 | 0.7753 | 0.1557 | 0.8580 | 0.001 |
60
- | 0.1694 | 4.0 | 1092 | 0.2495 | 0.6113 | 0.7691 | 0.1499 | 0.8373 | 0.001 |
61
- | 0.1694 | 5.0 | 1365 | 0.2450 | 0.6317 | 0.7745 | 0.1577 | 0.8461 | 0.001 |
62
- | 0.1637 | 6.0 | 1638 | 0.2574 | 0.6221 | 0.7803 | 0.1530 | 0.8509 | 0.001 |
63
- | 0.1637 | 7.0 | 1911 | 0.2616 | 0.6318 | 0.7838 | 0.1423 | 0.8520 | 0.001 |
64
- | 0.1598 | 8.0 | 2184 | 0.2592 | 0.6268 | 0.7825 | 0.1434 | 0.8521 | 0.001 |
65
- | 0.1598 | 9.0 | 2457 | 0.2585 | 0.6407 | 0.7841 | 0.1432 | 0.8556 | 0.001 |
66
- | 0.157 | 10.0 | 2730 | 0.2592 | 0.6350 | 0.7779 | 0.1507 | 0.8422 | 0.001 |
67
- | 0.1564 | 11.0 | 3003 | 0.2685 | 0.6442 | 0.7906 | 0.1401 | 0.8599 | 0.001 |
68
- | 0.1564 | 12.0 | 3276 | 0.2606 | 0.6413 | 0.7896 | 0.1404 | 0.8593 | 0.001 |
69
- | 0.1556 | 13.0 | 3549 | 0.2696 | 0.6359 | 0.7822 | 0.1421 | 0.8492 | 0.001 |
70
- | 0.1556 | 14.0 | 3822 | 0.2637 | 0.6460 | 0.7887 | 0.1394 | 0.8568 | 0.001 |
71
- | 0.1547 | 15.0 | 4095 | 0.2554 | 0.6554 | 0.7915 | 0.1380 | 0.8576 | 0.001 |
72
- | 0.1547 | 16.0 | 4368 | 0.2550 | 0.6453 | 0.7858 | 0.1441 | 0.8506 | 0.001 |
73
- | 0.1539 | 17.0 | 4641 | 0.2678 | 0.6485 | 0.7904 | 0.1411 | 0.8607 | 0.001 |
74
- | 0.1539 | 18.0 | 4914 | 0.2606 | 0.6549 | 0.7941 | 0.1381 | 0.8618 | 0.001 |
75
- | 0.1552 | 19.0 | 5187 | 0.2654 | 0.6523 | 0.7937 | 0.1372 | 0.8604 | 0.001 |
76
- | 0.1552 | 20.0 | 5460 | 0.2540 | 0.6515 | 0.7915 | 0.1396 | 0.8594 | 0.001 |
77
- | 0.1531 | 21.0 | 5733 | 0.2578 | 0.6543 | 0.7925 | 0.1379 | 0.8593 | 0.001 |
78
- | 0.1536 | 22.0 | 6006 | 0.2661 | 0.6524 | 0.7952 | 0.1363 | 0.8620 | 0.001 |
79
- | 0.1536 | 23.0 | 6279 | 0.2710 | 0.6567 | 0.7962 | 0.1363 | 0.8595 | 0.001 |
80
- | 0.1535 | 24.0 | 6552 | 0.2661 | 0.6439 | 0.7872 | 0.1401 | 0.8565 | 0.001 |
81
- | 0.1535 | 25.0 | 6825 | 0.2755 | 0.6538 | 0.7961 | 0.1360 | 0.8589 | 0.001 |
82
- | 0.153 | 26.0 | 7098 | 0.2692 | 0.6408 | 0.7942 | 0.1371 | 0.8612 | 0.001 |
83
- | 0.153 | 27.0 | 7371 | 0.2654 | 0.6470 | 0.7902 | 0.1367 | 0.8539 | 0.001 |
84
- | 0.1532 | 28.0 | 7644 | 0.2689 | 0.6427 | 0.7912 | 0.1371 | 0.8539 | 0.001 |
85
- | 0.1532 | 29.0 | 7917 | 0.2692 | 0.6485 | 0.7944 | 0.1378 | 0.8597 | 0.001 |
86
- | 0.1539 | 30.0 | 8190 | 0.2651 | 0.6472 | 0.7938 | 0.1364 | 0.8590 | 0.001 |
87
- | 0.1539 | 31.0 | 8463 | 0.2748 | 0.6533 | 0.7999 | 0.1357 | 0.8673 | 0.001 |
88
- | 0.1527 | 32.0 | 8736 | 0.2665 | 0.6620 | 0.7929 | 0.1379 | 0.8630 | 0.001 |
89
- | 0.1524 | 33.0 | 9009 | 0.2730 | 0.6722 | 0.7990 | 0.1356 | 0.8643 | 0.001 |
90
- | 0.1524 | 34.0 | 9282 | 0.2730 | 0.6706 | 0.7967 | 0.1347 | 0.8615 | 0.001 |
91
- | 0.1516 | 35.0 | 9555 | 0.2772 | 0.6483 | 0.7947 | 0.1354 | 0.8588 | 0.001 |
92
- | 0.1516 | 36.0 | 9828 | 0.2585 | 0.6553 | 0.7928 | 0.1376 | 0.8582 | 0.001 |
93
- | 0.1527 | 37.0 | 10101 | 0.2748 | 0.6681 | 0.7992 | 0.1346 | 0.8638 | 0.001 |
94
- | 0.1527 | 38.0 | 10374 | 0.2717 | 0.6543 | 0.7889 | 0.1378 | 0.8525 | 0.001 |
95
- | 0.1503 | 39.0 | 10647 | 0.2665 | 0.6627 | 0.7965 | 0.1367 | 0.8659 | 0.001 |
96
- | 0.1503 | 40.0 | 10920 | 0.2737 | 0.6702 | 0.8005 | 0.1373 | 0.8705 | 0.001 |
97
- | 0.152 | 41.0 | 11193 | 0.2658 | 0.6610 | 0.7942 | 0.1377 | 0.8583 | 0.001 |
98
- | 0.152 | 42.0 | 11466 | 0.2810 | 0.6706 | 0.8002 | 0.1354 | 0.8642 | 0.001 |
99
- | 0.1515 | 43.0 | 11739 | 0.2651 | 0.6620 | 0.8000 | 0.1367 | 0.8699 | 0.001 |
100
- | 0.147 | 44.0 | 12012 | 0.2869 | 0.6826 | 0.8087 | 0.1291 | 0.8724 | 0.0001 |
101
- | 0.147 | 45.0 | 12285 | 0.2997 | 0.6939 | 0.8115 | 0.1276 | 0.8721 | 0.0001 |
102
- | 0.139 | 46.0 | 12558 | 0.2959 | 0.6856 | 0.8103 | 0.1270 | 0.8700 | 0.0001 |
103
- | 0.139 | 47.0 | 12831 | 0.2973 | 0.6943 | 0.8125 | 0.1269 | 0.8726 | 0.0001 |
104
- | 0.1375 | 48.0 | 13104 | 0.2980 | 0.6942 | 0.8132 | 0.1262 | 0.8743 | 0.0001 |
105
- | 0.1375 | 49.0 | 13377 | 0.2966 | 0.6956 | 0.8147 | 0.1263 | 0.8775 | 0.0001 |
106
- | 0.1353 | 50.0 | 13650 | 0.2928 | 0.7007 | 0.8153 | 0.1258 | 0.8782 | 0.0001 |
107
- | 0.1353 | 51.0 | 13923 | 0.2973 | 0.6995 | 0.8152 | 0.1257 | 0.8776 | 0.0001 |
108
- | 0.1337 | 52.0 | 14196 | 0.2973 | 0.6975 | 0.8135 | 0.1250 | 0.8729 | 0.0001 |
109
- | 0.1337 | 53.0 | 14469 | 0.2949 | 0.6962 | 0.8133 | 0.1248 | 0.8757 | 0.0001 |
110
- | 0.1338 | 54.0 | 14742 | 0.3018 | 0.6981 | 0.8143 | 0.1247 | 0.8739 | 0.0001 |
111
- | 0.1322 | 55.0 | 15015 | 0.3008 | 0.7020 | 0.8166 | 0.1245 | 0.8792 | 0.0001 |
112
- | 0.1322 | 56.0 | 15288 | 0.3011 | 0.7041 | 0.8185 | 0.1244 | 0.8820 | 0.0001 |
113
- | 0.1313 | 57.0 | 15561 | 0.3004 | 0.6984 | 0.8162 | 0.1239 | 0.8770 | 0.0001 |
114
- | 0.1313 | 58.0 | 15834 | 0.3001 | 0.7041 | 0.8171 | 0.1236 | 0.8785 | 0.0001 |
115
- | 0.1309 | 59.0 | 16107 | 0.3049 | 0.7019 | 0.8159 | 0.1237 | 0.8758 | 0.0001 |
116
- | 0.1309 | 60.0 | 16380 | 0.2990 | 0.7008 | 0.8153 | 0.1234 | 0.8731 | 0.0001 |
117
- | 0.13 | 61.0 | 16653 | 0.3025 | 0.7083 | 0.8189 | 0.1229 | 0.8791 | 0.0001 |
118
- | 0.13 | 62.0 | 16926 | 0.3028 | 0.7055 | 0.8166 | 0.1227 | 0.8767 | 0.0001 |
119
- | 0.1288 | 63.0 | 17199 | 0.3039 | 0.7106 | 0.8176 | 0.1230 | 0.8774 | 0.0001 |
120
- | 0.1288 | 64.0 | 17472 | 0.3049 | 0.7086 | 0.8192 | 0.1233 | 0.8803 | 0.0001 |
121
- | 0.1291 | 65.0 | 17745 | 0.3049 | 0.7104 | 0.8188 | 0.1231 | 0.8798 | 0.0001 |
122
- | 0.1283 | 66.0 | 18018 | 0.3028 | 0.7061 | 0.8186 | 0.1219 | 0.8789 | 0.0001 |
123
- | 0.1283 | 67.0 | 18291 | 0.3042 | 0.7155 | 0.8197 | 0.1229 | 0.8823 | 0.0001 |
124
- | 0.1273 | 68.0 | 18564 | 0.3080 | 0.7153 | 0.8210 | 0.1225 | 0.8844 | 0.0001 |
125
- | 0.1273 | 69.0 | 18837 | 0.3032 | 0.7102 | 0.8196 | 0.1222 | 0.8799 | 0.0001 |
126
- | 0.1265 | 70.0 | 19110 | 0.3084 | 0.7109 | 0.8185 | 0.1223 | 0.8768 | 0.0001 |
127
- | 0.1265 | 71.0 | 19383 | 0.3077 | 0.7120 | 0.8170 | 0.1224 | 0.8737 | 0.0001 |
128
- | 0.1264 | 72.0 | 19656 | 0.3063 | 0.7204 | 0.8204 | 0.1221 | 0.8803 | 0.0001 |
129
- | 0.1264 | 73.0 | 19929 | 0.3087 | 0.7144 | 0.8198 | 0.1217 | 0.8798 | 1e-05 |
130
- | 0.1249 | 74.0 | 20202 | 0.3067 | 0.7124 | 0.8190 | 0.1215 | 0.8757 | 1e-05 |
131
- | 0.1249 | 75.0 | 20475 | 0.3056 | 0.7145 | 0.8209 | 0.1212 | 0.8796 | 1e-05 |
132
- | 0.1236 | 76.0 | 20748 | 0.3080 | 0.7191 | 0.8219 | 0.1216 | 0.8822 | 1e-05 |
133
- | 0.1233 | 77.0 | 21021 | 0.3132 | 0.7203 | 0.8237 | 0.1214 | 0.8868 | 1e-05 |
134
- | 0.1233 | 78.0 | 21294 | 0.3098 | 0.7168 | 0.8223 | 0.1211 | 0.8823 | 1e-05 |
135
- | 0.123 | 79.0 | 21567 | 0.3067 | 0.7161 | 0.8203 | 0.1215 | 0.8783 | 1e-05 |
136
- | 0.123 | 80.0 | 21840 | 0.3073 | 0.7151 | 0.8219 | 0.1216 | 0.8847 | 1e-05 |
137
- | 0.123 | 81.0 | 22113 | 0.3115 | 0.7187 | 0.8216 | 0.1210 | 0.8808 | 1e-05 |
138
- | 0.123 | 82.0 | 22386 | 0.3094 | 0.7157 | 0.8212 | 0.1208 | 0.8794 | 1e-05 |
139
- | 0.1214 | 83.0 | 22659 | 0.3001 | 0.7102 | 0.8180 | 0.1215 | 0.8751 | 1e-05 |
140
- | 0.1214 | 84.0 | 22932 | 0.3119 | 0.7196 | 0.8216 | 0.1210 | 0.8817 | 1e-05 |
141
- | 0.1234 | 85.0 | 23205 | 0.3101 | 0.7201 | 0.8234 | 0.1208 | 0.8835 | 1e-05 |
142
- | 0.1234 | 86.0 | 23478 | 0.1210 | 0.8218 | 0.7215 | 0.8813 | 0.3094 | 1e-05 |
143
- | 0.1216 | 87.0 | 23751 | 0.1212 | 0.8207 | 0.7142 | 0.8796 | 0.3087 | 1e-05 |
144
- | 0.1219 | 88.0 | 24024 | 0.1210 | 0.8224 | 0.7125 | 0.8824 | 0.3101 | 1e-05 |
145
- | 0.1219 | 89.0 | 24297 | 0.1214 | 0.8241 | 0.7250 | 0.8876 | 0.3122 | 0.0000 |
146
- | 0.1219 | 90.0 | 24570 | 0.1212 | 0.8234 | 0.7199 | 0.8864 | 0.3105 | 0.0000 |
147
- | 0.1219 | 91.0 | 24843 | 0.1208 | 0.8212 | 0.7160 | 0.8790 | 0.3098 | 0.0000 |
148
- | 0.1213 | 92.0 | 25116 | 0.1207 | 0.8224 | 0.7144 | 0.8807 | 0.3073 | 0.0000 |
149
- | 0.1213 | 93.0 | 25389 | 0.1209 | 0.8227 | 0.7189 | 0.8834 | 0.3080 | 0.0000 |
150
- | 0.122 | 94.0 | 25662 | 0.1209 | 0.8223 | 0.7188 | 0.8828 | 0.3098 | 0.0000 |
151
- | 0.122 | 95.0 | 25935 | 0.1207 | 0.8222 | 0.7127 | 0.8807 | 0.3094 | 0.0000 |
152
- | 0.1209 | 96.0 | 26208 | 0.1214 | 0.8218 | 0.7160 | 0.8821 | 0.3067 | 0.0000 |
153
- | 0.1209 | 97.0 | 26481 | 0.1226 | 0.8209 | 0.7159 | 0.8793 | 0.3094 | 0.0000 |
154
- | 0.122 | 98.0 | 26754 | 0.1210 | 0.8225 | 0.7190 | 0.8843 | 0.3119 | 0.0000 |
155
- | 0.1218 | 99.0 | 27027 | 0.1208 | 0.8214 | 0.7177 | 0.8803 | 0.3098 | 0.0000 |
156
- | 0.1218 | 100.0 | 27300 | 0.1208 | 0.8219 | 0.7191 | 0.8794 | 0.3108 | 0.0000 |
157
- | 0.1222 | 101.0 | 27573 | 0.1207 | 0.8231 | 0.7199 | 0.8825 | 0.3098 | 0.0000 |
158
- | 0.1222 | 102.0 | 27846 | 0.1210 | 0.8216 | 0.7181 | 0.8797 | 0.3101 | 0.0000 |
159
- | 0.1212 | 103.0 | 28119 | 0.1207 | 0.8219 | 0.7156 | 0.8799 | 0.3112 | 0.0000 |
160
- | 0.1212 | 104.0 | 28392 | 0.1212 | 0.8214 | 0.7151 | 0.8810 | 0.3091 | 0.0000 |
161
- | 0.1204 | 105.0 | 28665 | 0.1208 | 0.8216 | 0.7175 | 0.8822 | 0.3084 | 0.0000 |
162
-
163
-
164
- ### Framework versions
165
-
166
- - Transformers 4.41.1
167
- - Pytorch 2.3.0+cu121
168
- - Datasets 2.19.1
169
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - eng
5
+ license: wtfpl
6
  tags:
7
+ - multilabel-image-classification
8
+ - multilabel
9
  - generated_from_trainer
10
+ base_model: facebook/dinov2-giant
 
11
  model-index:
12
  - name: DinoVdeau-giant-2024_08_28-batch-size32_epochs150_freeze
13
  results: []
14
  ---
15
 
16
+ DinoVd'eau is a fine-tuned version of [facebook/dinov2-giant](https://huggingface.co/facebook/dinov2-giant). It achieves the following results on the test set:
 
17
 
 
 
 
 
18
  - Loss: 0.1208
19
  - F1 Micro: 0.8209
20
  - F1 Macro: 0.7101
21
  - Roc Auc: 0.8812
22
  - Accuracy: 0.3080
 
23
 
24
+ ---
25
+
26
+ # Model description
27
+ DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
28
 
29
+ The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
30
 
31
+ - **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
32
 
33
+ ---
34
+
35
+ # Intended uses & limitations
36
+ You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
37
+
38
+ ---
39
 
40
+ # Training and evaluation data
41
+ Details on the number of images for each class are given in the following table:
42
+ | Class | train | val | test | Total |
43
+ |:-------------------------|--------:|------:|-------:|--------:|
44
+ | Acropore_branched | 1469 | 464 | 475 | 2408 |
45
+ | Acropore_digitised | 568 | 160 | 160 | 888 |
46
+ | Acropore_sub_massive | 150 | 50 | 43 | 243 |
47
+ | Acropore_tabular | 999 | 297 | 293 | 1589 |
48
+ | Algae_assembly | 2546 | 847 | 845 | 4238 |
49
+ | Algae_drawn_up | 367 | 126 | 127 | 620 |
50
+ | Algae_limestone | 1652 | 557 | 563 | 2772 |
51
+ | Algae_sodding | 3148 | 984 | 985 | 5117 |
52
+ | Atra/Leucospilota | 1084 | 348 | 360 | 1792 |
53
+ | Bleached_coral | 219 | 71 | 70 | 360 |
54
+ | Blurred | 191 | 67 | 62 | 320 |
55
+ | Dead_coral | 1979 | 642 | 643 | 3264 |
56
+ | Fish | 2018 | 656 | 647 | 3321 |
57
+ | Homo_sapiens | 161 | 62 | 59 | 282 |
58
+ | Human_object | 157 | 58 | 55 | 270 |
59
+ | Living_coral | 406 | 154 | 141 | 701 |
60
+ | Millepore | 385 | 127 | 125 | 637 |
61
+ | No_acropore_encrusting | 441 | 130 | 154 | 725 |
62
+ | No_acropore_foliaceous | 204 | 36 | 46 | 286 |
63
+ | No_acropore_massive | 1031 | 336 | 338 | 1705 |
64
+ | No_acropore_solitary | 202 | 53 | 48 | 303 |
65
+ | No_acropore_sub_massive | 1401 | 433 | 422 | 2256 |
66
+ | Rock | 4489 | 1495 | 1473 | 7457 |
67
+ | Rubble | 3092 | 1030 | 1001 | 5123 |
68
+ | Sand | 5842 | 1939 | 1938 | 9719 |
69
+ | Sea_cucumber | 1408 | 439 | 447 | 2294 |
70
+ | Sea_urchins | 327 | 107 | 111 | 545 |
71
+ | Sponge | 269 | 96 | 105 | 470 |
72
+ | Syringodium_isoetifolium | 1212 | 392 | 391 | 1995 |
73
+ | Thalassodendron_ciliatum | 782 | 261 | 260 | 1303 |
74
+ | Useless | 579 | 193 | 193 | 965 |
75
 
76
+ ---
77
 
78
+ # Training procedure
79
 
80
+ ## Training hyperparameters
81
 
82
  The following hyperparameters were used during training:
83
+
84
+ - **Number of Epochs**: 150
85
+ - **Learning Rate**: 0.001
86
+ - **Train Batch Size**: 32
87
+ - **Eval Batch Size**: 32
88
+ - **Optimizer**: Adam
89
+ - **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
90
+ - **Freeze Encoder**: Yes
91
+ - **Data Augmentation**: Yes
92
+
93
+
94
+ ## Data Augmentation
95
+ Data were augmented using the following transformations :
96
+
97
+ Train Transforms
98
+ - **PreProcess**: No additional parameters
99
+ - **Resize**: probability=1.00
100
+ - **RandomHorizontalFlip**: probability=0.25
101
+ - **RandomVerticalFlip**: probability=0.25
102
+ - **ColorJiggle**: probability=0.25
103
+ - **RandomPerspective**: probability=0.25
104
+ - **Normalize**: probability=1.00
105
+
106
+ Val Transforms
107
+ - **PreProcess**: No additional parameters
108
+ - **Resize**: probability=1.00
109
+ - **Normalize**: probability=1.00
110
+
111
+
112
+
113
+ ## Training results
114
+ Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
115
+ --- | --- | --- | --- | --- | ---
116
+ 1 | 0.17437300086021423 | 0.21205821205821207 | 0.7424333879451582 | 0.5175126673232894 | 0.001
117
+ 2 | 0.1514047533273697 | 0.24774774774774774 | 0.7776526996039191 | 0.5912510936495889 | 0.001
118
+ 3 | 0.1557399332523346 | 0.23873873873873874 | 0.7752795082305376 | 0.6203462640123141 | 0.001
119
+ 4 | 0.1499096304178238 | 0.2494802494802495 | 0.7691087713115115 | 0.6112936548561337 | 0.001
120
+ 5 | 0.15773828327655792 | 0.24497574497574498 | 0.7744962975718961 | 0.6316545255681125 | 0.001
121
+ 6 | 0.1529887616634369 | 0.25744975744975745 | 0.7803354441211706 | 0.6220908262048482 | 0.001
122
+ 7 | 0.14232446253299713 | 0.2616077616077616 | 0.7837652308220353 | 0.6318272608971183 | 0.001
123
+ 8 | 0.14342056214809418 | 0.2591822591822592 | 0.7824785045129828 | 0.6268140575796306 | 0.001
124
+ 9 | 0.14322087168693542 | 0.25848925848925847 | 0.7840562521179261 | 0.6406683603322132 | 0.001
125
+ 10 | 0.15065954625606537 | 0.2591822591822592 | 0.7779440239394473 | 0.6350156993693012 | 0.001
126
+ 11 | 0.14012028276920319 | 0.26853776853776856 | 0.7905542412977358 | 0.6442254017268965 | 0.001
127
+ 12 | 0.14037516713142395 | 0.26056826056826055 | 0.7896027049873203 | 0.6412994039301575 | 0.001
128
+ 13 | 0.1420680731534958 | 0.2695772695772696 | 0.7822141560798549 | 0.6359393136512833 | 0.001
129
+ 14 | 0.13944004476070404 | 0.2636867636867637 | 0.7887275978034142 | 0.6459907944955716 | 0.001
130
+ 15 | 0.13796783983707428 | 0.2553707553707554 | 0.7915315007683115 | 0.6554204386045119 | 0.001
131
+ 16 | 0.1441228836774826 | 0.255024255024255 | 0.7857792404624779 | 0.6452554527968026 | 0.001
132
+ 17 | 0.14113685488700867 | 0.26784476784476785 | 0.7904489177124567 | 0.6485416937632181 | 0.001
133
+ 18 | 0.1381485015153885 | 0.26056826056826055 | 0.7940517933336151 | 0.654854199500387 | 0.001
134
+ 19 | 0.13720253109931946 | 0.2654192654192654 | 0.793669650812508 | 0.6522812524843972 | 0.001
135
+ 20 | 0.13964051008224487 | 0.253984753984754 | 0.791502353390154 | 0.6515497507659908 | 0.001
136
+ 21 | 0.13785456120967865 | 0.2577962577962578 | 0.7925025501530093 | 0.6542904488686327 | 0.001
137
+ 22 | 0.13633865118026733 | 0.2661122661122661 | 0.7952276188864443 | 0.6524154901292529 | 0.001
138
+ 23 | 0.13627886772155762 | 0.27096327096327094 | 0.7961679924728424 | 0.656651787807274 | 0.001
139
+ 24 | 0.14012865722179413 | 0.2661122661122661 | 0.7871861324722778 | 0.6438900918479138 | 0.001
140
+ 25 | 0.1359640210866928 | 0.27546777546777546 | 0.7960565795113589 | 0.6538094573584412 | 0.001
141
+ 26 | 0.1370791494846344 | 0.2692307692307692 | 0.7942222975262623 | 0.6407905722004358 | 0.001
142
+ 27 | 0.13669614493846893 | 0.2654192654192654 | 0.7902460077686664 | 0.6469565906332285 | 0.001
143
+ 28 | 0.1371130496263504 | 0.26888426888426886 | 0.7912144926283021 | 0.642689033704319 | 0.001
144
+ 29 | 0.13781629502773285 | 0.2692307692307692 | 0.7944120277694962 | 0.6484600603294314 | 0.001
145
+ 30 | 0.13641151785850525 | 0.26507276507276506 | 0.7938241064573914 | 0.6472439075890195 | 0.001
146
+ 31 | 0.13565559685230255 | 0.2747747747747748 | 0.7999161777032691 | 0.6533472550118105 | 0.001
147
+ 32 | 0.137930765748024 | 0.2664587664587665 | 0.7928646379853095 | 0.662032330499469 | 0.001
148
+ 33 | 0.13557712733745575 | 0.273042273042273 | 0.7989514185446704 | 0.6722007856831675 | 0.001
149
+ 34 | 0.1347290426492691 | 0.273042273042273 | 0.7966670917825107 | 0.670590685863264 | 0.001
150
+ 35 | 0.13544337451457977 | 0.2772002772002772 | 0.7946646145953571 | 0.6482708127714739 | 0.001
151
+ 36 | 0.13763058185577393 | 0.25848925848925847 | 0.7927604900328681 | 0.6552995006011981 | 0.001
152
+ 37 | 0.13456694781780243 | 0.2747747747747748 | 0.7992204380799051 | 0.6680976075122991 | 0.001
153
+ 38 | 0.13784632086753845 | 0.27165627165627165 | 0.7889066758966815 | 0.6543467314054483 | 0.001
154
+ 39 | 0.13671767711639404 | 0.2664587664587665 | 0.7965357098029371 | 0.6627442989440849 | 0.001
155
+ 40 | 0.13730555772781372 | 0.27373527373527373 | 0.8004978220286246 | 0.670153584497431 | 0.001
156
+ 41 | 0.13770104944705963 | 0.26576576576576577 | 0.7942296990711015 | 0.6610276871242879 | 0.001
157
+ 42 | 0.13536451756954193 | 0.28101178101178104 | 0.8001525876319246 | 0.6705886094654014 | 0.001
158
+ 43 | 0.13665379583835602 | 0.26507276507276506 | 0.8000498525196295 | 0.6619628883017729 | 0.001
159
+ 44 | 0.12908011674880981 | 0.2869022869022869 | 0.808658516161447 | 0.6825865030851337 | 0.0001
160
+ 45 | 0.12761357426643372 | 0.29972279972279975 | 0.811512367788968 | 0.6938587241702103 | 0.0001
161
+ 46 | 0.12698666751384735 | 0.2959112959112959 | 0.8103163511624953 | 0.6856377454961721 | 0.0001
162
+ 47 | 0.12690682709217072 | 0.2972972972972973 | 0.8124920976103174 | 0.6942647446672258 | 0.0001
163
+ 48 | 0.12617328763008118 | 0.29799029799029797 | 0.8131711409395973 | 0.694151320978192 | 0.0001
164
+ 49 | 0.1263018250465393 | 0.2966042966042966 | 0.8147346514047868 | 0.6956458198072734 | 0.0001
165
+ 50 | 0.1258096992969513 | 0.2927927927927928 | 0.8153475224476222 | 0.7006577033751422 | 0.0001
166
+ 51 | 0.12573884427547455 | 0.2972972972972973 | 0.8151571934207786 | 0.6994505755010588 | 0.0001
167
+ 52 | 0.12501972913742065 | 0.2972972972972973 | 0.8134649455833967 | 0.6974514657531053 | 0.0001
168
+ 53 | 0.12481856346130371 | 0.2948717948717949 | 0.8132960287301124 | 0.6962280886309719 | 0.0001
169
+ 54 | 0.12473563104867935 | 0.30180180180180183 | 0.8143470573377115 | 0.6980743235485474 | 0.0001
170
+ 55 | 0.12453257292509079 | 0.30076230076230076 | 0.8165587111775452 | 0.7020497284253308 | 0.0001
171
+ 56 | 0.12440259009599686 | 0.3011088011088011 | 0.8185497191939213 | 0.7041152638460181 | 0.0001
172
+ 57 | 0.12393573671579361 | 0.3004158004158004 | 0.8162207357859533 | 0.6984123654445143 | 0.0001
173
+ 58 | 0.12355069816112518 | 0.30006930006930005 | 0.8171478565179352 | 0.7041206694443728 | 0.0001
174
+ 59 | 0.1237163171172142 | 0.3049203049203049 | 0.8158932617269447 | 0.701908769020469 | 0.0001
175
+ 60 | 0.12339853495359421 | 0.29902979902979904 | 0.8152564590468943 | 0.7008492179245241 | 0.0001
176
+ 61 | 0.12294851988554001 | 0.3024948024948025 | 0.8188720173535793 | 0.7083200505706103 | 0.0001
177
+ 62 | 0.12270853668451309 | 0.30284130284130284 | 0.8166017506386899 | 0.7054890147149661 | 0.0001
178
+ 63 | 0.12301415950059891 | 0.3038808038808039 | 0.8176490288010717 | 0.7105833307429198 | 0.0001
179
+ 64 | 0.12328237295150757 | 0.3049203049203049 | 0.8191759178412541 | 0.7085844813380441 | 0.0001
180
+ 65 | 0.12309526652097702 | 0.3049203049203049 | 0.8187567612548888 | 0.7103887558295827 | 0.0001
181
+ 66 | 0.12194398790597916 | 0.30284130284130284 | 0.8186407442947141 | 0.7061406642055487 | 0.0001
182
+ 67 | 0.12292120605707169 | 0.3042273042273042 | 0.8196775527077305 | 0.7154558287425048 | 0.0001
183
+ 68 | 0.12254418432712555 | 0.30803880803880807 | 0.8209686046990085 | 0.7153434473934246 | 0.0001
184
+ 69 | 0.12215162813663483 | 0.3031878031878032 | 0.8195983668027664 | 0.7101570111652898 | 0.0001
185
+ 70 | 0.12227334082126617 | 0.30838530838530837 | 0.8184682603033231 | 0.7109091736321397 | 0.0001
186
+ 71 | 0.12237659096717834 | 0.3076923076923077 | 0.8170385739086251 | 0.7120407268503043 | 0.0001
187
+ 72 | 0.1220996230840683 | 0.3063063063063063 | 0.8203632727878687 | 0.7203981522602361 | 0.0001
188
+ 73 | 0.12169401347637177 | 0.3087318087318087 | 0.8198457369189076 | 0.7144193511981376 | 1e-05
189
+ 74 | 0.12149834632873535 | 0.30665280665280664 | 0.8190452070406484 | 0.7124121424308173 | 1e-05
190
+ 75 | 0.12120900303125381 | 0.30561330561330563 | 0.8208643316893754 | 0.7145366354361308 | 1e-05
191
+ 76 | 0.1215985044836998 | 0.30803880803880807 | 0.8218541121766927 | 0.7191205487713891 | 1e-05
192
+ 77 | 0.1214083805680275 | 0.31323631323631324 | 0.8236983547367989 | 0.7202749659896155 | 1e-05
193
+ 78 | 0.12110316008329391 | 0.3097713097713098 | 0.8222591362126246 | 0.7168480610158249 | 1e-05
194
+ 79 | 0.12149946391582489 | 0.30665280665280664 | 0.8202977563430488 | 0.7160500850094047 | 1e-05
195
+ 80 | 0.121590256690979 | 0.30734580734580735 | 0.8219257062844905 | 0.7150848378423871 | 1e-05
196
+ 81 | 0.12097962200641632 | 0.3115038115038115 | 0.8216162121591194 | 0.7187103786018064 | 1e-05
197
+ 82 | 0.12082336097955704 | 0.30942480942480943 | 0.821175978238125 | 0.7156786549052798 | 1e-05
198
+ 83 | 0.12147542089223862 | 0.30006930006930005 | 0.8180206046275968 | 0.7102312532643303 | 1e-05
199
+ 84 | 0.12100570648908615 | 0.31185031185031187 | 0.8215978053038491 | 0.7195842513107142 | 1e-05
200
+ 85 | 0.1208326444029808 | 0.31011781011781014 | 0.8233587533156498 | 0.7201395616901511 | 1e-05
201
+ 86 | 0.1210438683629036 | 0.30942480942480943 | 0.8218151540383014 | 0.7215167678270465 | 1e-05
202
+ 87 | 0.1212099939584732 | 0.3087318087318087 | 0.8207271207689094 | 0.7141558876633265 | 1e-05
203
+ 88 | 0.12096676975488663 | 0.31011781011781014 | 0.8223957468017943 | 0.7124615854591595 | 1e-05
204
+ 89 | 0.12144902348518372 | 0.3121968121968122 | 0.8240642149234173 | 0.7249978662662346 | 1.0000000000000002e-06
205
+ 90 | 0.12115956842899323 | 0.31046431046431044 | 0.8233893154847453 | 0.7198781344667567 | 1.0000000000000002e-06
206
+ 91 | 0.1208055168390274 | 0.3097713097713098 | 0.8212459126351974 | 0.7159843095789674 | 1.0000000000000002e-06
207
+ 92 | 0.12069901078939438 | 0.30734580734580735 | 0.8223893065998329 | 0.7144036362020703 | 1.0000000000000002e-06
208
+ 93 | 0.12093978375196457 | 0.30803880803880807 | 0.8226574468966088 | 0.7189178649032102 | 1.0000000000000002e-06
209
+ 94 | 0.12092197686433792 | 0.3097713097713098 | 0.8223438666334908 | 0.7187657914933285 | 1.0000000000000002e-06
210
+ 95 | 0.1206900030374527 | 0.30942480942480943 | 0.8221934621968021 | 0.7127077698746517 | 1.0000000000000002e-06
211
+ 96 | 0.12142115086317062 | 0.30665280665280664 | 0.8218438538205979 | 0.7160309422692305 | 1.0000000000000002e-06
212
+ 97 | 0.12264719605445862 | 0.30942480942480943 | 0.8208711661575798 | 0.71586766610014 | 1.0000000000000002e-06
213
+ 98 | 0.12095578759908676 | 0.31185031185031187 | 0.8224561403508771 | 0.7190138873820752 | 1.0000000000000002e-06
214
+ 99 | 0.12075632065534592 | 0.3097713097713098 | 0.821403230518803 | 0.7177436878101541 | 1.0000000000000002e-07
215
+ 100 | 0.12078335881233215 | 0.3108108108108108 | 0.8218776194467728 | 0.7191112023643382 | 1.0000000000000002e-07
216
+ 101 | 0.12071150541305542 | 0.3097713097713098 | 0.8230599775551769 | 0.7199208624613478 | 1.0000000000000002e-07
217
+ 102 | 0.12102664262056351 | 0.31011781011781014 | 0.821560093739538 | 0.7181176324357539 | 1.0000000000000002e-07
218
+ 103 | 0.12072332948446274 | 0.31115731115731116 | 0.8218559116391932 | 0.7156251632807489 | 1.0000000000000002e-07
219
+ 104 | 0.12122868001461029 | 0.3090783090783091 | 0.8214226220223222 | 0.7151217785983346 | 1.0000000000000002e-07
220
+ 105 | 0.12081456929445267 | 0.30838530838530837 | 0.8216449497883642 | 0.7175066761763569 | 1.0000000000000004e-08
221
+
222
+
223
+ ---
224
+
225
+ # CO2 Emissions
226
+
227
+ The estimated CO2 emissions for training this model are documented below:
228
+
229
+ - **Emissions**: 0.5035923822963007 grams of CO2
230
+ - **Source**: Code Carbon
231
+ - **Training Type**: fine-tuning
232
+ - **Geographical Location**: Brest, France
233
+ - **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
234
+
235
+
236
+ ---
237
+
238
+ # Framework Versions
239
+
240
+ - **Transformers**: 4.41.1
241
+ - **Pytorch**: 2.3.0+cu121
242
+ - **Datasets**: 2.19.1
243
+ - **Tokenizers**: 0.19.1
244
+