File size: 11,253 Bytes
6259946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4668
- Rmse: 0.1546
- Mae: 0.1143
- Kl Divergence: 0.3931
- Explained Variance: 0.4690
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rmse   | Mae    | Kl Divergence | Explained Variance | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------------:|:------------------:|:------:|
| No log        | 1.0   | 219   | 0.4855          | 0.1771 | 0.1364 | 0.3101        | 0.3433             | 0.001  |
| No log        | 2.0   | 438   | 0.4760          | 0.1688 | 0.1247 | 0.5077        | 0.3891             | 0.001  |
| 0.5195        | 3.0   | 657   | 0.4777          | 0.1707 | 0.1230 | 0.7896        | 0.3848             | 0.001  |
| 0.5195        | 4.0   | 876   | 0.4743          | 0.1672 | 0.1238 | 0.4932        | 0.4037             | 0.001  |
| 0.4742        | 5.0   | 1095  | 0.4746          | 0.1669 | 0.1277 | 0.2901        | 0.4132             | 0.001  |
| 0.4742        | 6.0   | 1314  | 0.4750          | 0.1674 | 0.1253 | 0.4399        | 0.4022             | 0.001  |
| 0.4706        | 7.0   | 1533  | 0.4745          | 0.1671 | 0.1259 | 0.4868        | 0.4020             | 0.001  |
| 0.4706        | 8.0   | 1752  | 0.4742          | 0.1672 | 0.1257 | 0.3241        | 0.4111             | 0.001  |
| 0.4706        | 9.0   | 1971  | 0.4730          | 0.1658 | 0.1236 | 0.4560        | 0.4107             | 0.001  |
| 0.4678        | 10.0  | 2190  | 0.4751          | 0.1679 | 0.1269 | 0.2141        | 0.4190             | 0.001  |
| 0.4678        | 11.0  | 2409  | 0.4733          | 0.1663 | 0.1265 | 0.2530        | 0.4189             | 0.001  |
| 0.4674        | 12.0  | 2628  | 0.4758          | 0.1684 | 0.1264 | 0.3966        | 0.4074             | 0.001  |
| 0.4674        | 13.0  | 2847  | 0.4722          | 0.1650 | 0.1223 | 0.6055        | 0.4142             | 0.001  |
| 0.4676        | 14.0  | 3066  | 0.4747          | 0.1666 | 0.1250 | 0.4203        | 0.4071             | 0.001  |
| 0.4676        | 15.0  | 3285  | 0.4733          | 0.1662 | 0.1227 | 0.6553        | 0.4153             | 0.001  |
| 0.4663        | 16.0  | 3504  | 0.4735          | 0.1656 | 0.1241 | 0.3576        | 0.4176             | 0.001  |
| 0.4663        | 17.0  | 3723  | 0.4722          | 0.1643 | 0.1221 | 0.4545        | 0.4231             | 0.001  |
| 0.4663        | 18.0  | 3942  | 0.4724          | 0.1647 | 0.1225 | 0.4902        | 0.4209             | 0.001  |
| 0.4655        | 19.0  | 4161  | 0.4729          | 0.1650 | 0.1261 | 0.3158        | 0.4224             | 0.001  |
| 0.4655        | 20.0  | 4380  | 0.4697          | 0.1623 | 0.1203 | 0.4574        | 0.4342             | 0.0001 |
| 0.4635        | 21.0  | 4599  | 0.4689          | 0.1613 | 0.1197 | 0.4569        | 0.4383             | 0.0001 |
| 0.4635        | 22.0  | 4818  | 0.4691          | 0.1617 | 0.1202 | 0.4535        | 0.4374             | 0.0001 |
| 0.4615        | 23.0  | 5037  | 0.4691          | 0.1614 | 0.1210 | 0.2971        | 0.4442             | 0.0001 |
| 0.4615        | 24.0  | 5256  | 0.4692          | 0.1616 | 0.1196 | 0.3916        | 0.4406             | 0.0001 |
| 0.4615        | 25.0  | 5475  | 0.4677          | 0.1601 | 0.1181 | 0.4516        | 0.4465             | 0.0001 |
| 0.4601        | 26.0  | 5694  | 0.4680          | 0.1605 | 0.1171 | 0.6089        | 0.4434             | 0.0001 |
| 0.4601        | 27.0  | 5913  | 0.4675          | 0.1600 | 0.1182 | 0.4741        | 0.4461             | 0.0001 |
| 0.4585        | 28.0  | 6132  | 0.4681          | 0.1606 | 0.1200 | 0.3356        | 0.4489             | 0.0001 |
| 0.4585        | 29.0  | 6351  | 0.4678          | 0.1603 | 0.1181 | 0.4330        | 0.4460             | 0.0001 |
| 0.4578        | 30.0  | 6570  | 0.4680          | 0.1602 | 0.1194 | 0.3160        | 0.4504             | 0.0001 |
| 0.4578        | 31.0  | 6789  | 0.4677          | 0.1600 | 0.1179 | 0.4190        | 0.4468             | 0.0001 |
| 0.4579        | 32.0  | 7008  | 0.4675          | 0.1598 | 0.1188 | 0.3706        | 0.4504             | 0.0001 |
| 0.4579        | 33.0  | 7227  | 0.4671          | 0.1593 | 0.1181 | 0.3504        | 0.4546             | 0.0001 |
| 0.4579        | 34.0  | 7446  | 0.4670          | 0.1594 | 0.1180 | 0.3881        | 0.4533             | 0.0001 |
| 0.4569        | 35.0  | 7665  | 0.4663          | 0.1587 | 0.1166 | 0.4398        | 0.4556             | 0.0001 |
| 0.4569        | 36.0  | 7884  | 0.4666          | 0.1587 | 0.1170 | 0.4382        | 0.4544             | 0.0001 |
| 0.4572        | 37.0  | 8103  | 0.4658          | 0.1581 | 0.1163 | 0.4330        | 0.4594             | 0.0001 |
| 0.4572        | 38.0  | 8322  | 0.4659          | 0.1583 | 0.1162 | 0.4878        | 0.4567             | 0.0001 |
| 0.4572        | 39.0  | 8541  | 0.4670          | 0.1595 | 0.1178 | 0.3791        | 0.4552             | 0.0001 |
| 0.4572        | 40.0  | 8760  | 0.4665          | 0.1588 | 0.1178 | 0.3889        | 0.4568             | 0.0001 |
| 0.4572        | 41.0  | 8979  | 0.4666          | 0.1589 | 0.1184 | 0.3222        | 0.4591             | 0.0001 |
| 0.4559        | 42.0  | 9198  | 0.4655          | 0.1579 | 0.1164 | 0.4262        | 0.4607             | 0.0001 |
| 0.4559        | 43.0  | 9417  | 0.4656          | 0.1579 | 0.1162 | 0.4611        | 0.4603             | 0.0001 |
| 0.4554        | 44.0  | 9636  | 0.4656          | 0.1580 | 0.1164 | 0.4586        | 0.4616             | 0.0001 |
| 0.4554        | 45.0  | 9855  | 0.4660          | 0.1583 | 0.1158 | 0.4368        | 0.4597             | 0.0001 |
| 0.4557        | 46.0  | 10074 | 0.4660          | 0.1582 | 0.1164 | 0.4118        | 0.4604             | 0.0001 |
| 0.4557        | 47.0  | 10293 | 0.4652          | 0.1577 | 0.1154 | 0.5424        | 0.4614             | 0.0001 |
| 0.4551        | 48.0  | 10512 | 0.4660          | 0.1586 | 0.1160 | 0.5251        | 0.4596             | 0.0001 |
| 0.4551        | 49.0  | 10731 | 0.4660          | 0.1585 | 0.1161 | 0.5007        | 0.4572             | 0.0001 |
| 0.4551        | 50.0  | 10950 | 0.4666          | 0.1586 | 0.1185 | 0.2424        | 0.4659             | 0.0001 |
| 0.4545        | 51.0  | 11169 | 0.4661          | 0.1584 | 0.1162 | 0.4171        | 0.4589             | 0.0001 |
| 0.4545        | 52.0  | 11388 | 0.4650          | 0.1575 | 0.1155 | 0.4912        | 0.4630             | 0.0001 |
| 0.4548        | 53.0  | 11607 | 0.4654          | 0.1578 | 0.1169 | 0.4030        | 0.4644             | 0.0001 |
| 0.4548        | 54.0  | 11826 | 0.4661          | 0.1585 | 0.1153 | 0.4811        | 0.4595             | 0.0001 |
| 0.455         | 55.0  | 12045 | 0.4653          | 0.1576 | 0.1167 | 0.3774        | 0.4638             | 0.0001 |
| 0.455         | 56.0  | 12264 | 0.4654          | 0.1575 | 0.1176 | 0.3254        | 0.4670             | 0.0001 |
| 0.455         | 57.0  | 12483 | 0.4654          | 0.1575 | 0.1162 | 0.3649        | 0.4662             | 0.0001 |
| 0.4531        | 58.0  | 12702 | 0.4665          | 0.1584 | 0.1166 | 0.4075        | 0.4607             | 0.0001 |
| 0.4531        | 59.0  | 12921 | 0.4652          | 0.1575 | 0.1157 | 0.4202        | 0.4654             | 1e-05  |
| 0.4538        | 60.0  | 13140 | 0.4653          | 0.1571 | 0.1157 | 0.4084        | 0.4669             | 1e-05  |
| 0.4538        | 61.0  | 13359 | 0.4654          | 0.1573 | 0.1153 | 0.4497        | 0.4661             | 1e-05  |
| 0.4529        | 62.0  | 13578 | 0.4648          | 0.1568 | 0.1153 | 0.4112        | 0.4682             | 1e-05  |
| 0.4529        | 63.0  | 13797 | 0.4648          | 0.1567 | 0.1152 | 0.3748        | 0.4702             | 1e-05  |
| 0.4527        | 64.0  | 14016 | 0.4652          | 0.1571 | 0.1162 | 0.3044        | 0.4721             | 1e-05  |
| 0.4527        | 65.0  | 14235 | 0.4648          | 0.1569 | 0.1153 | 0.4685        | 0.4670             | 1e-05  |
| 0.4527        | 66.0  | 14454 | 0.4650          | 0.1573 | 0.1148 | 0.5087        | 0.4671             | 1e-05  |
| 0.4531        | 67.0  | 14673 | 0.4646          | 0.1568 | 0.1155 | 0.4274        | 0.4690             | 1e-05  |
| 0.4531        | 68.0  | 14892 | 0.4646          | 0.1566 | 0.1144 | 0.4969        | 0.4680             | 1e-05  |
| 0.452         | 69.0  | 15111 | 0.4644          | 0.1564 | 0.1145 | 0.4480        | 0.4696             | 1e-05  |
| 0.452         | 70.0  | 15330 | 0.4648          | 0.1567 | 0.1150 | 0.4291        | 0.4692             | 1e-05  |
| 0.4524        | 71.0  | 15549 | 0.4645          | 0.1565 | 0.1156 | 0.3797        | 0.4711             | 1e-05  |
| 0.4524        | 72.0  | 15768 | 0.4647          | 0.1569 | 0.1150 | 0.4280        | 0.4690             | 1e-05  |
| 0.4524        | 73.0  | 15987 | 0.4641          | 0.1563 | 0.1142 | 0.4592        | 0.4707             | 1e-05  |
| 0.4515        | 74.0  | 16206 | 0.4642          | 0.1564 | 0.1151 | 0.4321        | 0.4706             | 1e-05  |
| 0.4515        | 75.0  | 16425 | 0.4645          | 0.1565 | 0.1152 | 0.3843        | 0.4708             | 1e-05  |
| 0.4521        | 76.0  | 16644 | 0.4646          | 0.1569 | 0.1147 | 0.5216        | 0.4675             | 1e-05  |
| 0.4521        | 77.0  | 16863 | 0.4648          | 0.1569 | 0.1152 | 0.4094        | 0.4691             | 1e-05  |
| 0.4519        | 78.0  | 17082 | 0.4643          | 0.1564 | 0.1149 | 0.4399        | 0.4709             | 1e-05  |
| 0.4519        | 79.0  | 17301 | 0.4646          | 0.1567 | 0.1147 | 0.4178        | 0.4697             | 1e-05  |
| 0.4517        | 80.0  | 17520 | 0.4644          | 0.1564 | 0.1150 | 0.4373        | 0.4700             | 0.0000 |
| 0.4517        | 81.0  | 17739 | 0.4645          | 0.1567 | 0.1151 | 0.4701        | 0.4688             | 0.0000 |
| 0.4517        | 82.0  | 17958 | 0.4644          | 0.1565 | 0.1146 | 0.4601        | 0.4703             | 0.0000 |
| 0.4514        | 83.0  | 18177 | 0.4646          | 0.1567 | 0.1147 | 0.4511        | 0.4684             | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1