lotek93 commited on
Commit
8fa7cf3
·
1 Parent(s): 4c03389

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1399.61 +/- 491.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc3e1c70bafb47c2b887f8c7374e493d74df97960cc99c6e6518e80c28f0595
3
+ size 129267
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb5067b160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb5067b1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb5067b280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb5067b310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcb5067b3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcb5067b430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb5067b4c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb5067b550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcb5067b5e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb5067b670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb5067b700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb5067b790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fcb506759f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 8000000,
63
+ "_total_timesteps": 8000000,
64
+ "_num_timesteps_at_start": 4000000,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675022235668973633,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIAgCz+Jgts+elgdPxEavD/jq5o/hqoRPj3zcz4u7FG/vNUpPi1Wk78HT2G/t9dUPygWcD+fJti+lLXpPm08LD/F/xY/rxKev0GF2D30f0o/NQ/2PFjYMsDsSZs/3X4iv7D9lb+HiAA/7+kcP4hPdD/DdLa99F6NPrnWID+OXh4/iCmVPpxTg79NsFO/fieivQ7JOT84MGc+Fcz9vqVc3T9Acl4+HiDRvaH8KT/Zfvm+F8yJP18uW775OH2/QA8HPnCcB7/0bZQ/wjdmP2bUmr+w/ZW/h4gAP+/pHD+IT3Q/q/NRvxkVcT6bPSE/u+alP91kc73OHGQ/w5kYPpPCab3/618/vxkzvW4Ohr+1m6A7iMBOvxViVz9p/zA+3quIPu5nhL4QAEs/jh8gP4re5z3qDlm/+g2Uv5PVTb7Q/wY9sP2Vv4eIAD/509C/iE90P/qshr/4V3e+g08VP0Bccj+1+Y8+Gx7UPEpk4Dyn+8Y+R/VaP9EFi77WKty+tgvPPuuqB755foK/ZgSWPmw3AMD6ZjE/YRM1vyeQfT46sQA/c3gAv4vtRT54OTu/vfYawGt3Wj+HiAA/7+kcP9Ifhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACeNpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANxDePQAAAADehve/AAAAAH1ZOr0AAAAA4QEBQAAAAAD98429AAAAAFdq5z8AAAAAtBaQvAAAAAAAq+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARPR6NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0pCr4AAAAADmzwvwAAAABqHg++AAAAAIrm4j8AAAAA9+3dvQAAAABVAPY/AAAAAAf39L0AAAAAgiH1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN07FrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsY5I9AAAAAMlO7r8AAAAA1xNCvQAAAABjE/k/AAAAANWip70AAAAATAEBQAAAAAAaRNe9AAAAAKpF5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYuccPQAAAAACiv2/AAAAAJ5qnL0AAAAADif3PwAAAAAv0cW9AAAAAPnY6j8AAAAACBkLvgAAAAA0ZPK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJl9NHkLhJmMAWyUTegDjAF0lEdAzjHFuogmq3V9lChoBkdAm61VeBxxUGgHTegDaAhHQM4yrb2USqV1fZQoaAZHQJw2DguRLbpoB03oA2gIR0DOM7oe3hGZdX2UKGgGR0CaBunwG4ZuaAdN6ANoCEdAzjPo+W4Vh3V9lChoBkdAm6ZoraufVmgHTegDaAhHQM40mdgWrOt1fZQoaAZHQJwNRyS3b21oB03oA2gIR0DONYhh2GIsdX2UKGgGR0Cd7II42jwhaAdN6ANoCEdAzjaZtGd7OXV9lChoBkdAmhbFIAfdRGgHTegDaAhHQM42yijcmBx1fZQoaAZHQJtm2FvhqCZoB03oA2gIR0DON4AyhzvJdX2UKGgGR0CIba6unuRcaAdN6ANoCEdAzjhw5BC2MXV9lChoBkdAm1itet0V8GgHTegDaAhHQM45gvIn0Cl1fZQoaAZHQJyPc2wV0tBoB03oA2gIR0DOObQqNIbwdX2UKGgGR0CWlMJp35eraAdN6ANoCEdAzjpqee4Cp3V9lChoBkdAlFDrSApazWgHTegDaAhHQM47XEd/8VJ1fZQoaAZHQJrdXk5p8F9oB03oA2gIR0DOPHWCiAUddX2UKGgGR0CbmYaUzKs/aAdN6ANoCEdAzjyltNSIg3V9lChoBkdAdMBI4EOiFmgHTegDaAhHQM49WhEKE391fZQoaAZHQJg5jbsWweNoB03oA2gIR0DOPkNUn5SFdX2UKGgGR0CZtM/rSmZWaAdN6ANoCEdAzj9OWgOBlXV9lChoBkdAmCSx7JGOMmgHTegDaAhHQM4/fZBLPD51fZQoaAZHQJUFL8/D+BJoB03oA2gIR0DOQDGxdIGydX2UKGgGR0CagpXhfjS5aAdN6ANoCEdAzkEYK1G9YnV9lChoBkdAmutqdxyXD2gHTegDaAhHQM5CKYEW69V1fZQoaAZHQJlo6IvalDZoB03oA2gIR0DOQlnLJSzgdX2UKGgGR0CXHkix3V0+aAdN6ANoCEdAzkMOSTQmeHV9lChoBkdAmWOq2SdOI2gHTegDaAhHQM5D+hTOxB51fZQoaAZHQJSEuwY+B6NoB03oA2gIR0DORQf3pOerdX2UKGgGR0CTPNegctGvaAdN6ANoCEdAzkU3eANG3HV9lChoBkdAl1xVJDmbLGgHTegDaAhHQM5F6lEqlP91fZQoaAZHQJk8a6xxDLNoB03oA2gIR0DORs6uyNXHdX2UKGgGR0CWb+GJN0vHaAdN6ANoCEdAzkfawV0tAnV9lChoBkdAmeCrlNlAeWgHTegDaAhHQM5IDb48EFJ1fZQoaAZHQJcyA0SAYpFoB03oA2gIR0DOSLqbKA8TdX2UKGgGR0CbxfnfVI7OaAdN6ANoCEdAzkmgpMpPRHV9lChoBkdAnUaUfgaWHGgHTegDaAhHQM5Kw2alUId1fZQoaAZHQJsp2hUR3/xoB03oA2gIR0DOSvKVKPGRdX2UKGgGR0CcsycebNKRaAdN6ANoCEdAzkuhxjJ+2HV9lChoBkdAmNfGhysCDGgHTegDaAhHQM5Mi+36Q/51fZQoaAZHQIfvtZNfw7VoB03oA2gIR0DOTaUhFEy+dX2UKGgGR0CarY3t8eCDaAdN6ANoCEdAzk3UYSg5BHV9lChoBkdAnGV5g1FYuGgHTegDaAhHQM5Ohe8Gs3h1fZQoaAZHQI2mv+wTufFoB03oA2gIR0DOT27PY4ACdX2UKGgGR0CeHnAq/dqMaAdN6ANoCEdAzlB9dLxqf3V9lChoBkdAmq1XXVbzLGgHTegDaAhHQM5Qrl7+kxh1fZQoaAZHQJdyENYr8SBoB03oA2gIR0DOUWSP6sQvdX2UKGgGR0CW4PJHy3CsaAdN6ANoCEdAzlJQd8zAOHV9lChoBkdAlj8s0cfeUWgHTegDaAhHQM5TbpNCZ4R1fZQoaAZHQJvDzZGrjo9oB03oA2gIR0DOU6DuKGcndX2UKGgGR0CH2XUDMeOoaAdN6ANoCEdAzlRYHKwIMXV9lChoBkdAl9xZul41P2gHTegDaAhHQM5VQ/lyR0V1fZQoaAZHQHue0lRgqmVoB03oA2gIR0DOVl4UFjd6dX2UKGgGR0CMRuXKKYReaAdN6ANoCEdAzlaOKR+z+nV9lChoBkdAkfK7f51vEWgHTegDaAhHQM5XQo7Njb11fZQoaAZHQJL2m3fAKv5oB03oA2gIR0DOWC5l6JIldX2UKGgGR0CVy46be/HpaAdN6ANoCEdAzllJOj7AL3V9lChoBkdAk2mQvUSZjWgHTegDaAhHQM5ZfdYwIt11fZQoaAZHQJZXNld1MdtoB03oA2gIR0DOWj6hHskZdX2UKGgGR0CWAAjj7yhBaAdN6ANoCEdAzlsmISDh+HV9lChoBkdAmL2EBCD28WgHTegDaAhHQM5cOPQnhKl1fZQoaAZHQJdhbLpzLfVoB03oA2gIR0DOXGoGpuMudX2UKGgGR0CZ2MwhW5pbaAdN6ANoCEdAzl0fXNC7b3V9lChoBkdAm22HQtz0YmgHTegDaAhHQM5eBfQSi/R1fZQoaAZHQJhWb4rSVnpoB03oA2gIR0DOXxw1JlJ6dX2UKGgGR0CaFe5WBBiTaAdN6ANoCEdAzl9NCIk7fnV9lChoBkdAl99PW1+iJ2gHTegDaAhHQM5f/2ovSMN1fZQoaAZHQJlTW4+bExZoB03oA2gIR0DOYOqOPvKEdX2UKGgGR0CZ7UAtnPE9aAdN6ANoCEdAzmIDruYx+XV9lChoBkdAk1y2kadc0WgHTegDaAhHQM5iNymhufp1fZQoaAZHQJrAK/N7jT9oB03oA2gIR0DOYuq1Cw8odX2UKGgGR0CZl1j59E1EaAdN6ANoCEdAzmPUOT7l73V9lChoBkdAli83GKhtcmgHTegDaAhHQM5k503XI2h1fZQoaAZHQJpE3Ot4iX9oB03oA2gIR0DOZRebPQfIdX2UKGgGR0CXL0eTmnwYaAdN6ANoCEdAzmXJ6cAimnV9lChoBkdAitVbO3UhFGgHTegDaAhHQM5mtT544ZN1fZQoaAZHQJglyll9SdhoB03oA2gIR0DOZ8N76YVqdX2UKGgGR0CY2ubnoxHoaAdN6ANoCEdAzmfzClabF3V9lChoBkdAkxacW0qpcWgHTegDaAhHQM5os++dsi11fZQoaAZHQJikbJDE3sJoB03oA2gIR0DOaZ8UmD15dX2UKGgGR0CYb4RGMGX5aAdN6ANoCEdAzmqsdGy5Z3V9lChoBkdAkG5+Vkc0cmgHTegDaAhHQM5q24ffXPJ1fZQoaAZHQJOyaMcZLqVoB03oA2gIR0DOa5ZjMFEBdX2UKGgGR0CU5Ynied08aAdN6ANoCEdAzmx8Tot+TnV9lChoBkdAk+qDHXEqD2gHTegDaAhHQM5tk2BjFyd1fZQoaAZHQJhj+bH6uW9oB03oA2gIR0DObcJmVZ9vdX2UKGgGR0CRlt/9YOlPaAdN6ANoCEdAzm5zuYQarHV9lChoBkdAlTUOMdcSoWgHTegDaAhHQM5vWDhLoOh1fZQoaAZHQJaKpE/jbSJoB03oA2gIR0DOcGnhGYrsdX2UKGgGR0CO/rW4EwFlaAdN6ANoCEdAznCcXRgJC3V9lChoBkdAmCEi0v4/NmgHTegDaAhHQM5xUWfTTfB1fZQoaAZHQJFuglWwNb1oB03oA2gIR0DOcjqkfs/qdX2UKGgGR0CWYfWqcVgyaAdN6ANoCEdAznNLLbpNbnV9lChoBkdAlhRRTOxB3WgHTegDaAhHQM5zeY/NZ/11fZQoaAZHQJhT/84xUNtoB03oA2gIR0DOdCqcXm/4dX2UKGgGR0CKt+Ucn3L3aAdN6ANoCEdAznUWR7qptXV9lChoBkdAlRckkGA09GgHTegDaAhHQM52JKRU3n91fZQoaAZHQJXDyx5cC5poB03oA2gIR0DOdlSkTHsDdX2UKGgGR0CaMy1+y7f6aAdN6ANoCEdAzncDbD/EO3V9lChoBkdAl8Cj9jwx32gHTegDaAhHQM54A034sVd1fZQoaAZHQJbEWYu01IloB03oA2gIR0DOeRTtsvZidX2UKGgGR0CXpefJmuklaAdN6ANoCEdAznlGzJIUanVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 250000,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d32696d2029f86949efbbedbcf595e60650cf34867fe632c03b6984423654835
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:895b5e57f7665d3a5d3a7efa002c7403d1546e388ee4dbd251d7536fe9133faf
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb5067b160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb5067b1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb5067b280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb5067b310>", "_build": "<function ActorCriticPolicy._build at 0x7fcb5067b3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb5067b430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb5067b4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb5067b550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb5067b5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb5067b670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb5067b700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb5067b790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb506759f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 8000000, "_total_timesteps": 8000000, "_num_timesteps_at_start": 4000000, "seed": null, "action_noise": null, "start_time": 1675022235668973633, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIAgCz+Jgts+elgdPxEavD/jq5o/hqoRPj3zcz4u7FG/vNUpPi1Wk78HT2G/t9dUPygWcD+fJti+lLXpPm08LD/F/xY/rxKev0GF2D30f0o/NQ/2PFjYMsDsSZs/3X4iv7D9lb+HiAA/7+kcP4hPdD/DdLa99F6NPrnWID+OXh4/iCmVPpxTg79NsFO/fieivQ7JOT84MGc+Fcz9vqVc3T9Acl4+HiDRvaH8KT/Zfvm+F8yJP18uW775OH2/QA8HPnCcB7/0bZQ/wjdmP2bUmr+w/ZW/h4gAP+/pHD+IT3Q/q/NRvxkVcT6bPSE/u+alP91kc73OHGQ/w5kYPpPCab3/618/vxkzvW4Ohr+1m6A7iMBOvxViVz9p/zA+3quIPu5nhL4QAEs/jh8gP4re5z3qDlm/+g2Uv5PVTb7Q/wY9sP2Vv4eIAD/509C/iE90P/qshr/4V3e+g08VP0Bccj+1+Y8+Gx7UPEpk4Dyn+8Y+R/VaP9EFi77WKty+tgvPPuuqB755foK/ZgSWPmw3AMD6ZjE/YRM1vyeQfT46sQA/c3gAv4vtRT54OTu/vfYawGt3Wj+HiAA/7+kcP9Ifhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACeNpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANxDePQAAAADehve/AAAAAH1ZOr0AAAAA4QEBQAAAAAD98429AAAAAFdq5z8AAAAAtBaQvAAAAAAAq+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARPR6NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0pCr4AAAAADmzwvwAAAABqHg++AAAAAIrm4j8AAAAA9+3dvQAAAABVAPY/AAAAAAf39L0AAAAAgiH1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN07FrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsY5I9AAAAAMlO7r8AAAAA1xNCvQAAAABjE/k/AAAAANWip70AAAAATAEBQAAAAAAaRNe9AAAAAKpF5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYuccPQAAAAACiv2/AAAAAJ5qnL0AAAAADif3PwAAAAAv0cW9AAAAAPnY6j8AAAAACBkLvgAAAAA0ZPK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJl9NHkLhJmMAWyUTegDjAF0lEdAzjHFuogmq3V9lChoBkdAm61VeBxxUGgHTegDaAhHQM4yrb2USqV1fZQoaAZHQJw2DguRLbpoB03oA2gIR0DOM7oe3hGZdX2UKGgGR0CaBunwG4ZuaAdN6ANoCEdAzjPo+W4Vh3V9lChoBkdAm6ZoraufVmgHTegDaAhHQM40mdgWrOt1fZQoaAZHQJwNRyS3b21oB03oA2gIR0DONYhh2GIsdX2UKGgGR0Cd7II42jwhaAdN6ANoCEdAzjaZtGd7OXV9lChoBkdAmhbFIAfdRGgHTegDaAhHQM42yijcmBx1fZQoaAZHQJtm2FvhqCZoB03oA2gIR0DON4AyhzvJdX2UKGgGR0CIba6unuRcaAdN6ANoCEdAzjhw5BC2MXV9lChoBkdAm1itet0V8GgHTegDaAhHQM45gvIn0Cl1fZQoaAZHQJyPc2wV0tBoB03oA2gIR0DOObQqNIbwdX2UKGgGR0CWlMJp35eraAdN6ANoCEdAzjpqee4Cp3V9lChoBkdAlFDrSApazWgHTegDaAhHQM47XEd/8VJ1fZQoaAZHQJrdXk5p8F9oB03oA2gIR0DOPHWCiAUddX2UKGgGR0CbmYaUzKs/aAdN6ANoCEdAzjyltNSIg3V9lChoBkdAdMBI4EOiFmgHTegDaAhHQM49WhEKE391fZQoaAZHQJg5jbsWweNoB03oA2gIR0DOPkNUn5SFdX2UKGgGR0CZtM/rSmZWaAdN6ANoCEdAzj9OWgOBlXV9lChoBkdAmCSx7JGOMmgHTegDaAhHQM4/fZBLPD51fZQoaAZHQJUFL8/D+BJoB03oA2gIR0DOQDGxdIGydX2UKGgGR0CagpXhfjS5aAdN6ANoCEdAzkEYK1G9YnV9lChoBkdAmutqdxyXD2gHTegDaAhHQM5CKYEW69V1fZQoaAZHQJlo6IvalDZoB03oA2gIR0DOQlnLJSzgdX2UKGgGR0CXHkix3V0+aAdN6ANoCEdAzkMOSTQmeHV9lChoBkdAmWOq2SdOI2gHTegDaAhHQM5D+hTOxB51fZQoaAZHQJSEuwY+B6NoB03oA2gIR0DORQf3pOerdX2UKGgGR0CTPNegctGvaAdN6ANoCEdAzkU3eANG3HV9lChoBkdAl1xVJDmbLGgHTegDaAhHQM5F6lEqlP91fZQoaAZHQJk8a6xxDLNoB03oA2gIR0DORs6uyNXHdX2UKGgGR0CWb+GJN0vHaAdN6ANoCEdAzkfawV0tAnV9lChoBkdAmeCrlNlAeWgHTegDaAhHQM5IDb48EFJ1fZQoaAZHQJcyA0SAYpFoB03oA2gIR0DOSLqbKA8TdX2UKGgGR0CbxfnfVI7OaAdN6ANoCEdAzkmgpMpPRHV9lChoBkdAnUaUfgaWHGgHTegDaAhHQM5Kw2alUId1fZQoaAZHQJsp2hUR3/xoB03oA2gIR0DOSvKVKPGRdX2UKGgGR0CcsycebNKRaAdN6ANoCEdAzkuhxjJ+2HV9lChoBkdAmNfGhysCDGgHTegDaAhHQM5Mi+36Q/51fZQoaAZHQIfvtZNfw7VoB03oA2gIR0DOTaUhFEy+dX2UKGgGR0CarY3t8eCDaAdN6ANoCEdAzk3UYSg5BHV9lChoBkdAnGV5g1FYuGgHTegDaAhHQM5Ohe8Gs3h1fZQoaAZHQI2mv+wTufFoB03oA2gIR0DOT27PY4ACdX2UKGgGR0CeHnAq/dqMaAdN6ANoCEdAzlB9dLxqf3V9lChoBkdAmq1XXVbzLGgHTegDaAhHQM5Qrl7+kxh1fZQoaAZHQJdyENYr8SBoB03oA2gIR0DOUWSP6sQvdX2UKGgGR0CW4PJHy3CsaAdN6ANoCEdAzlJQd8zAOHV9lChoBkdAlj8s0cfeUWgHTegDaAhHQM5TbpNCZ4R1fZQoaAZHQJvDzZGrjo9oB03oA2gIR0DOU6DuKGcndX2UKGgGR0CH2XUDMeOoaAdN6ANoCEdAzlRYHKwIMXV9lChoBkdAl9xZul41P2gHTegDaAhHQM5VQ/lyR0V1fZQoaAZHQHue0lRgqmVoB03oA2gIR0DOVl4UFjd6dX2UKGgGR0CMRuXKKYReaAdN6ANoCEdAzlaOKR+z+nV9lChoBkdAkfK7f51vEWgHTegDaAhHQM5XQo7Njb11fZQoaAZHQJL2m3fAKv5oB03oA2gIR0DOWC5l6JIldX2UKGgGR0CVy46be/HpaAdN6ANoCEdAzllJOj7AL3V9lChoBkdAk2mQvUSZjWgHTegDaAhHQM5ZfdYwIt11fZQoaAZHQJZXNld1MdtoB03oA2gIR0DOWj6hHskZdX2UKGgGR0CWAAjj7yhBaAdN6ANoCEdAzlsmISDh+HV9lChoBkdAmL2EBCD28WgHTegDaAhHQM5cOPQnhKl1fZQoaAZHQJdhbLpzLfVoB03oA2gIR0DOXGoGpuMudX2UKGgGR0CZ2MwhW5pbaAdN6ANoCEdAzl0fXNC7b3V9lChoBkdAm22HQtz0YmgHTegDaAhHQM5eBfQSi/R1fZQoaAZHQJhWb4rSVnpoB03oA2gIR0DOXxw1JlJ6dX2UKGgGR0CaFe5WBBiTaAdN6ANoCEdAzl9NCIk7fnV9lChoBkdAl99PW1+iJ2gHTegDaAhHQM5f/2ovSMN1fZQoaAZHQJlTW4+bExZoB03oA2gIR0DOYOqOPvKEdX2UKGgGR0CZ7UAtnPE9aAdN6ANoCEdAzmIDruYx+XV9lChoBkdAk1y2kadc0WgHTegDaAhHQM5iNymhufp1fZQoaAZHQJrAK/N7jT9oB03oA2gIR0DOYuq1Cw8odX2UKGgGR0CZl1j59E1EaAdN6ANoCEdAzmPUOT7l73V9lChoBkdAli83GKhtcmgHTegDaAhHQM5k503XI2h1fZQoaAZHQJpE3Ot4iX9oB03oA2gIR0DOZRebPQfIdX2UKGgGR0CXL0eTmnwYaAdN6ANoCEdAzmXJ6cAimnV9lChoBkdAitVbO3UhFGgHTegDaAhHQM5mtT544ZN1fZQoaAZHQJglyll9SdhoB03oA2gIR0DOZ8N76YVqdX2UKGgGR0CY2ubnoxHoaAdN6ANoCEdAzmfzClabF3V9lChoBkdAkxacW0qpcWgHTegDaAhHQM5os++dsi11fZQoaAZHQJikbJDE3sJoB03oA2gIR0DOaZ8UmD15dX2UKGgGR0CYb4RGMGX5aAdN6ANoCEdAzmqsdGy5Z3V9lChoBkdAkG5+Vkc0cmgHTegDaAhHQM5q24ffXPJ1fZQoaAZHQJOyaMcZLqVoB03oA2gIR0DOa5ZjMFEBdX2UKGgGR0CU5Ynied08aAdN6ANoCEdAzmx8Tot+TnV9lChoBkdAk+qDHXEqD2gHTegDaAhHQM5tk2BjFyd1fZQoaAZHQJhj+bH6uW9oB03oA2gIR0DObcJmVZ9vdX2UKGgGR0CRlt/9YOlPaAdN6ANoCEdAzm5zuYQarHV9lChoBkdAlTUOMdcSoWgHTegDaAhHQM5vWDhLoOh1fZQoaAZHQJaKpE/jbSJoB03oA2gIR0DOcGnhGYrsdX2UKGgGR0CO/rW4EwFlaAdN6ANoCEdAznCcXRgJC3V9lChoBkdAmCEi0v4/NmgHTegDaAhHQM5xUWfTTfB1fZQoaAZHQJFuglWwNb1oB03oA2gIR0DOcjqkfs/qdX2UKGgGR0CWYfWqcVgyaAdN6ANoCEdAznNLLbpNbnV9lChoBkdAlhRRTOxB3WgHTegDaAhHQM5zeY/NZ/11fZQoaAZHQJhT/84xUNtoB03oA2gIR0DOdCqcXm/4dX2UKGgGR0CKt+Ucn3L3aAdN6ANoCEdAznUWR7qptXV9lChoBkdAlRckkGA09GgHTegDaAhHQM52JKRU3n91fZQoaAZHQJXDyx5cC5poB03oA2gIR0DOdlSkTHsDdX2UKGgGR0CaMy1+y7f6aAdN6ANoCEdAzncDbD/EO3V9lChoBkdAl8Cj9jwx32gHTegDaAhHQM54A034sVd1fZQoaAZHQJbEWYu01IloB03oA2gIR0DOeRTtsvZidX2UKGgGR0CXpefJmuklaAdN6ANoCEdAznlGzJIUanVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (638 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1399.6062708079946, "std_reward": 491.105377683709, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T21:37:52.420427"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6083144a93f5151b23409dda3397cb99c011cb4937fe7a1712da13d7aa4b6b9d
3
+ size 2136