{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb506759f0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 8000000, "_total_timesteps": 8000000, "_num_timesteps_at_start": 4000000, "seed": null, "action_noise": null, "start_time": 1675022235668973633, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIAgCz+Jgts+elgdPxEavD/jq5o/hqoRPj3zcz4u7FG/vNUpPi1Wk78HT2G/t9dUPygWcD+fJti+lLXpPm08LD/F/xY/rxKev0GF2D30f0o/NQ/2PFjYMsDsSZs/3X4iv7D9lb+HiAA/7+kcP4hPdD/DdLa99F6NPrnWID+OXh4/iCmVPpxTg79NsFO/fieivQ7JOT84MGc+Fcz9vqVc3T9Acl4+HiDRvaH8KT/Zfvm+F8yJP18uW775OH2/QA8HPnCcB7/0bZQ/wjdmP2bUmr+w/ZW/h4gAP+/pHD+IT3Q/q/NRvxkVcT6bPSE/u+alP91kc73OHGQ/w5kYPpPCab3/618/vxkzvW4Ohr+1m6A7iMBOvxViVz9p/zA+3quIPu5nhL4QAEs/jh8gP4re5z3qDlm/+g2Uv5PVTb7Q/wY9sP2Vv4eIAD/509C/iE90P/qshr/4V3e+g08VP0Bccj+1+Y8+Gx7UPEpk4Dyn+8Y+R/VaP9EFi77WKty+tgvPPuuqB755foK/ZgSWPmw3AMD6ZjE/YRM1vyeQfT46sQA/c3gAv4vtRT54OTu/vfYawGt3Wj+HiAA/7+kcP9Ifhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACeNpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANxDePQAAAADehve/AAAAAH1ZOr0AAAAA4QEBQAAAAAD98429AAAAAFdq5z8AAAAAtBaQvAAAAAAAq+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARPR6NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB0pCr4AAAAADmzwvwAAAABqHg++AAAAAIrm4j8AAAAA9+3dvQAAAABVAPY/AAAAAAf39L0AAAAAgiH1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN07FrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICsY5I9AAAAAMlO7r8AAAAA1xNCvQAAAABjE/k/AAAAANWip70AAAAATAEBQAAAAAAaRNe9AAAAAKpF5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9CPK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYuccPQAAAAACiv2/AAAAAJ5qnL0AAAAADif3PwAAAAAv0cW9AAAAAPnY6j8AAAAACBkLvgAAAAA0ZPK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJl9NHkLhJmMAWyUTegDjAF0lEdAzjHFuogmq3V9lChoBkdAm61VeBxxUGgHTegDaAhHQM4yrb2USqV1fZQoaAZHQJw2DguRLbpoB03oA2gIR0DOM7oe3hGZdX2UKGgGR0CaBunwG4ZuaAdN6ANoCEdAzjPo+W4Vh3V9lChoBkdAm6ZoraufVmgHTegDaAhHQM40mdgWrOt1fZQoaAZHQJwNRyS3b21oB03oA2gIR0DONYhh2GIsdX2UKGgGR0Cd7II42jwhaAdN6ANoCEdAzjaZtGd7OXV9lChoBkdAmhbFIAfdRGgHTegDaAhHQM42yijcmBx1fZQoaAZHQJtm2FvhqCZoB03oA2gIR0DON4AyhzvJdX2UKGgGR0CIba6unuRcaAdN6ANoCEdAzjhw5BC2MXV9lChoBkdAm1itet0V8GgHTegDaAhHQM45gvIn0Cl1fZQoaAZHQJyPc2wV0tBoB03oA2gIR0DOObQqNIbwdX2UKGgGR0CWlMJp35eraAdN6ANoCEdAzjpqee4Cp3V9lChoBkdAlFDrSApazWgHTegDaAhHQM47XEd/8VJ1fZQoaAZHQJrdXk5p8F9oB03oA2gIR0DOPHWCiAUddX2UKGgGR0CbmYaUzKs/aAdN6ANoCEdAzjyltNSIg3V9lChoBkdAdMBI4EOiFmgHTegDaAhHQM49WhEKE391fZQoaAZHQJg5jbsWweNoB03oA2gIR0DOPkNUn5SFdX2UKGgGR0CZtM/rSmZWaAdN6ANoCEdAzj9OWgOBlXV9lChoBkdAmCSx7JGOMmgHTegDaAhHQM4/fZBLPD51fZQoaAZHQJUFL8/D+BJoB03oA2gIR0DOQDGxdIGydX2UKGgGR0CagpXhfjS5aAdN6ANoCEdAzkEYK1G9YnV9lChoBkdAmutqdxyXD2gHTegDaAhHQM5CKYEW69V1fZQoaAZHQJlo6IvalDZoB03oA2gIR0DOQlnLJSzgdX2UKGgGR0CXHkix3V0+aAdN6ANoCEdAzkMOSTQmeHV9lChoBkdAmWOq2SdOI2gHTegDaAhHQM5D+hTOxB51fZQoaAZHQJSEuwY+B6NoB03oA2gIR0DORQf3pOerdX2UKGgGR0CTPNegctGvaAdN6ANoCEdAzkU3eANG3HV9lChoBkdAl1xVJDmbLGgHTegDaAhHQM5F6lEqlP91fZQoaAZHQJk8a6xxDLNoB03oA2gIR0DORs6uyNXHdX2UKGgGR0CWb+GJN0vHaAdN6ANoCEdAzkfawV0tAnV9lChoBkdAmeCrlNlAeWgHTegDaAhHQM5IDb48EFJ1fZQoaAZHQJcyA0SAYpFoB03oA2gIR0DOSLqbKA8TdX2UKGgGR0CbxfnfVI7OaAdN6ANoCEdAzkmgpMpPRHV9lChoBkdAnUaUfgaWHGgHTegDaAhHQM5Kw2alUId1fZQoaAZHQJsp2hUR3/xoB03oA2gIR0DOSvKVKPGRdX2UKGgGR0CcsycebNKRaAdN6ANoCEdAzkuhxjJ+2HV9lChoBkdAmNfGhysCDGgHTegDaAhHQM5Mi+36Q/51fZQoaAZHQIfvtZNfw7VoB03oA2gIR0DOTaUhFEy+dX2UKGgGR0CarY3t8eCDaAdN6ANoCEdAzk3UYSg5BHV9lChoBkdAnGV5g1FYuGgHTegDaAhHQM5Ohe8Gs3h1fZQoaAZHQI2mv+wTufFoB03oA2gIR0DOT27PY4ACdX2UKGgGR0CeHnAq/dqMaAdN6ANoCEdAzlB9dLxqf3V9lChoBkdAmq1XXVbzLGgHTegDaAhHQM5Qrl7+kxh1fZQoaAZHQJdyENYr8SBoB03oA2gIR0DOUWSP6sQvdX2UKGgGR0CW4PJHy3CsaAdN6ANoCEdAzlJQd8zAOHV9lChoBkdAlj8s0cfeUWgHTegDaAhHQM5TbpNCZ4R1fZQoaAZHQJvDzZGrjo9oB03oA2gIR0DOU6DuKGcndX2UKGgGR0CH2XUDMeOoaAdN6ANoCEdAzlRYHKwIMXV9lChoBkdAl9xZul41P2gHTegDaAhHQM5VQ/lyR0V1fZQoaAZHQHue0lRgqmVoB03oA2gIR0DOVl4UFjd6dX2UKGgGR0CMRuXKKYReaAdN6ANoCEdAzlaOKR+z+nV9lChoBkdAkfK7f51vEWgHTegDaAhHQM5XQo7Njb11fZQoaAZHQJL2m3fAKv5oB03oA2gIR0DOWC5l6JIldX2UKGgGR0CVy46be/HpaAdN6ANoCEdAzllJOj7AL3V9lChoBkdAk2mQvUSZjWgHTegDaAhHQM5ZfdYwIt11fZQoaAZHQJZXNld1MdtoB03oA2gIR0DOWj6hHskZdX2UKGgGR0CWAAjj7yhBaAdN6ANoCEdAzlsmISDh+HV9lChoBkdAmL2EBCD28WgHTegDaAhHQM5cOPQnhKl1fZQoaAZHQJdhbLpzLfVoB03oA2gIR0DOXGoGpuMudX2UKGgGR0CZ2MwhW5pbaAdN6ANoCEdAzl0fXNC7b3V9lChoBkdAm22HQtz0YmgHTegDaAhHQM5eBfQSi/R1fZQoaAZHQJhWb4rSVnpoB03oA2gIR0DOXxw1JlJ6dX2UKGgGR0CaFe5WBBiTaAdN6ANoCEdAzl9NCIk7fnV9lChoBkdAl99PW1+iJ2gHTegDaAhHQM5f/2ovSMN1fZQoaAZHQJlTW4+bExZoB03oA2gIR0DOYOqOPvKEdX2UKGgGR0CZ7UAtnPE9aAdN6ANoCEdAzmIDruYx+XV9lChoBkdAk1y2kadc0WgHTegDaAhHQM5iNymhufp1fZQoaAZHQJrAK/N7jT9oB03oA2gIR0DOYuq1Cw8odX2UKGgGR0CZl1j59E1EaAdN6ANoCEdAzmPUOT7l73V9lChoBkdAli83GKhtcmgHTegDaAhHQM5k503XI2h1fZQoaAZHQJpE3Ot4iX9oB03oA2gIR0DOZRebPQfIdX2UKGgGR0CXL0eTmnwYaAdN6ANoCEdAzmXJ6cAimnV9lChoBkdAitVbO3UhFGgHTegDaAhHQM5mtT544ZN1fZQoaAZHQJglyll9SdhoB03oA2gIR0DOZ8N76YVqdX2UKGgGR0CY2ubnoxHoaAdN6ANoCEdAzmfzClabF3V9lChoBkdAkxacW0qpcWgHTegDaAhHQM5os++dsi11fZQoaAZHQJikbJDE3sJoB03oA2gIR0DOaZ8UmD15dX2UKGgGR0CYb4RGMGX5aAdN6ANoCEdAzmqsdGy5Z3V9lChoBkdAkG5+Vkc0cmgHTegDaAhHQM5q24ffXPJ1fZQoaAZHQJOyaMcZLqVoB03oA2gIR0DOa5ZjMFEBdX2UKGgGR0CU5Ynied08aAdN6ANoCEdAzmx8Tot+TnV9lChoBkdAk+qDHXEqD2gHTegDaAhHQM5tk2BjFyd1fZQoaAZHQJhj+bH6uW9oB03oA2gIR0DObcJmVZ9vdX2UKGgGR0CRlt/9YOlPaAdN6ANoCEdAzm5zuYQarHV9lChoBkdAlTUOMdcSoWgHTegDaAhHQM5vWDhLoOh1fZQoaAZHQJaKpE/jbSJoB03oA2gIR0DOcGnhGYrsdX2UKGgGR0CO/rW4EwFlaAdN6ANoCEdAznCcXRgJC3V9lChoBkdAmCEi0v4/NmgHTegDaAhHQM5xUWfTTfB1fZQoaAZHQJFuglWwNb1oB03oA2gIR0DOcjqkfs/qdX2UKGgGR0CWYfWqcVgyaAdN6ANoCEdAznNLLbpNbnV9lChoBkdAlhRRTOxB3WgHTegDaAhHQM5zeY/NZ/11fZQoaAZHQJhT/84xUNtoB03oA2gIR0DOdCqcXm/4dX2UKGgGR0CKt+Ucn3L3aAdN6ANoCEdAznUWR7qptXV9lChoBkdAlRckkGA09GgHTegDaAhHQM52JKRU3n91fZQoaAZHQJXDyx5cC5poB03oA2gIR0DOdlSkTHsDdX2UKGgGR0CaMy1+y7f6aAdN6ANoCEdAzncDbD/EO3V9lChoBkdAl8Cj9jwx32gHTegDaAhHQM54A034sVd1fZQoaAZHQJbEWYu01IloB03oA2gIR0DOeRTtsvZidX2UKGgGR0CXpefJmuklaAdN6ANoCEdAznlGzJIUanVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}