File size: 1,491 Bytes
26718a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- merge
- mergekit
- lazymergekit
- jondurbin/bagel-dpo-34b-v0.2
- abacusai/MetaMath-Bagel-DPO-34B
base_model:
- jondurbin/bagel-dpo-34b-v0.2
- abacusai/MetaMath-Bagel-DPO-34B
---
# Pearl-34B-ties
Pearl-34B-ties is a merge of the following models:
* [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2)
* [abacusai/MetaMath-Bagel-DPO-34B](https://huggingface.co/abacusai/MetaMath-Bagel-DPO-34B)
## Configuration
```yaml
models:
- model: abacusai/Smaug-34B-v0.1
- model: jondurbin/bagel-dpo-34b-v0.2
parameters:
density: 0.45
weight: 0.5
- model: abacusai/MetaMath-Bagel-DPO-34B
parameters:
density: 0.48
weight: 0.5
merge_method: ties
base_model: abacusai/Smaug-34B-v0.1
parameters:
normalize: true
int8_mask: true
dtype: bfloat16
```
## Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "louisbrulenaudet/Pearl-34B-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |