louisbrulenaudet commited on
Commit
714ed93
1 Parent(s): 0d1959e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md CHANGED
@@ -34,6 +34,34 @@ datasets:
34
 
35
  # Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base).
38
  It achieves the following results on the evaluation set:
39
  - Loss: 0.4096
 
34
 
35
  # Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation
36
 
37
+ Lemone-router is a series of classification models designed to produce an optimal multi-agent system for different branches of tax law. Trained on a base of 49k lines comprising a set of synthetic questions generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation and authority documents, these models are based on an 8-category decomposition of the classification scheme derived from the Bulletin officiel des finances publiques - impôts :
38
+
39
+ ```python3
40
+ label2id = {
41
+ "Bénéfices professionnels": 0,
42
+ "Contrôle et contentieux": 1,
43
+ "Dispositifs transversaux": 2,
44
+ "Fiscalité des entreprises": 3,
45
+ "Patrimoine et enregistrement": 4,
46
+ "Revenus particuliers": 5,
47
+ "Revenus patrimoniaux": 6,
48
+ "Taxes sur la consommation": 7
49
+ }
50
+
51
+ id2label = {
52
+ 0: "Bénéfices professionnels",
53
+ 1: "Contrôle et contentieux",
54
+ 2: "Dispositifs transversaux",
55
+ 3: "Fiscalité des entreprises",
56
+ 4: "Patrimoine et enregistrement",
57
+ 5: "Revenus particuliers",
58
+ 6: "Revenus patrimoniaux",
59
+ 7: "Taxes sur la consommation"
60
+ }
61
+ ```
62
+
63
+ This breakdown may be debatable, but it nevertheless simplifies the diversity of categories and is a source of preparatory work.
64
+
65
  This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base).
66
  It achieves the following results on the evaluation set:
67
  - Loss: 0.4096