louislu9911 commited on
Commit
3a092cb
1 Parent(s): ff0e12a

Model save

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-tiny-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8649532710280374
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease
32
+
33
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4109
36
+ - Accuracy: 0.8650
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 480
57
+ - eval_batch_size: 480
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 1920
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 15
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 7.8796 | 0.98 | 10 | 3.9572 | 0.1706 |
71
+ | 2.3762 | 1.95 | 20 | 1.4334 | 0.6178 |
72
+ | 1.1413 | 2.93 | 30 | 0.8877 | 0.6841 |
73
+ | 0.7549 | 4.0 | 41 | 0.6403 | 0.7724 |
74
+ | 0.5904 | 4.98 | 51 | 0.5366 | 0.8098 |
75
+ | 0.5152 | 5.95 | 61 | 0.4799 | 0.8369 |
76
+ | 0.4764 | 6.93 | 71 | 0.4567 | 0.8486 |
77
+ | 0.4386 | 8.0 | 82 | 0.4421 | 0.8509 |
78
+ | 0.4306 | 8.98 | 92 | 0.4381 | 0.8519 |
79
+ | 0.4266 | 9.95 | 102 | 0.4296 | 0.8603 |
80
+ | 0.4072 | 10.93 | 112 | 0.4196 | 0.8593 |
81
+ | 0.4033 | 12.0 | 123 | 0.4127 | 0.8621 |
82
+ | 0.3982 | 12.98 | 133 | 0.4125 | 0.8640 |
83
+ | 0.3993 | 13.95 | 143 | 0.4097 | 0.8631 |
84
+ | 0.3812 | 14.63 | 150 | 0.4109 | 0.8650 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.37.2
90
+ - Pytorch 2.2.1
91
+ - Datasets 2.18.0
92
+ - Tokenizers 0.15.1