|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-22k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: switch_gate-leaf-disease-convnextv2-base-22k-224 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: None |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9378504672897197 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# switch_gate-leaf-disease-convnextv2-base-22k-224 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1674 |
|
- Accuracy: 0.9379 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 300 |
|
- eval_batch_size: 300 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1200 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 16 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6005 | 0.98 | 16 | 0.3258 | 0.8701 | |
|
| 0.234 | 1.97 | 32 | 0.2121 | 0.9173 | |
|
| 0.197 | 2.95 | 48 | 0.1869 | 0.9271 | |
|
| 0.1613 | 4.0 | 65 | 0.1692 | 0.9336 | |
|
| 0.1536 | 4.98 | 81 | 0.1616 | 0.9397 | |
|
| 0.1426 | 5.97 | 97 | 0.1628 | 0.9355 | |
|
| 0.132 | 6.95 | 113 | 0.1609 | 0.9407 | |
|
| 0.1304 | 8.0 | 130 | 0.1597 | 0.9402 | |
|
| 0.1245 | 8.98 | 146 | 0.1628 | 0.9350 | |
|
| 0.1224 | 9.97 | 162 | 0.1664 | 0.9364 | |
|
| 0.1143 | 10.95 | 178 | 0.1615 | 0.9388 | |
|
| 0.1106 | 12.0 | 195 | 0.1641 | 0.9393 | |
|
| 0.103 | 12.98 | 211 | 0.1689 | 0.9374 | |
|
| 0.1047 | 13.97 | 227 | 0.1673 | 0.9379 | |
|
| 0.102 | 14.95 | 243 | 0.1681 | 0.9397 | |
|
| 0.1038 | 15.75 | 256 | 0.1674 | 0.9379 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|