File size: 1,807 Bytes
064d789 528305c 064d789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-synonym-replacement
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-synonym-replacement
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021) using synonym replacment technique.
It achieves the following results on the evaluation set:
- Loss: 0.4556
- Precision: 0.6825
- Recall: 0.6704
- F1: 0.6764
- Accuracy: 0.8792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5491 | 1.0 | 624 | 0.4161 | 0.7217 | 0.6308 | 0.6732 | 0.8813 |
| 0.3284 | 2.0 | 1248 | 0.4195 | 0.7077 | 0.6485 | 0.6768 | 0.8820 |
| 0.2522 | 3.0 | 1872 | 0.4556 | 0.6825 | 0.6704 | 0.6764 | 0.8792 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.1
- Datasets 2.10.1
- Tokenizers 0.12.1
|