--- license: mit datasets: - best2009 - scb_mt_enth_2020 - oscar - wikipedia language: - th widget: - text: วัน ที่ _ 12 _ มีนาคม นี้ _ ฉัน จะ ไป วัดพระแก้ว _ ที่ กรุงเทพ library_name: transformers --- # HoogBERTa This repository includes the Thai pretrained language representation (HoogBERTa_base) and the fine-tuned model for multitask sequence labeling. # Documentation ## Prerequisite Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa ``` pip install attacut ``` ## Getting Start To initialize the model from hub, use the following commands ```python from transformers import AutoTokenizer, AutoModel from attacut import tokenized import torch tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa") model = AutoModel.from_pretrained("new5558/HoogBERTa") ``` To extract token features, based on the RoBERTa architecture, use the following commands ```python model.eval() sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ" all_sent = [] sentences = sentence.split(" ") for sent in sentences: all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]")) sentence = " _ ".join(all_sent) tokenized_text = tokenizer(sentence, return_tensors = 'pt') token_ids = tokenized_text['input_ids'] with torch.no_grad(): features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1] ``` For batch processing, ```python model.eval() sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"] inputList = [] for sentX in sentenceL: sentences = sentX.split(" ") all_sent = [] for sent in sentences: all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]")) sentence = " _ ".join(all_sent) inputList.append(sentence) tokenized_text = tokenizer(inputList, padding = True, return_tensors = 'pt') token_ids = tokenized_text['input_ids'] with torch.no_grad(): features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1] ``` To use HoogBERTa as an embedding layer, use ```python with torch.no_grad(): features = model(token_ids, output_hidden_states = True).hidden_states[-1] # where token_ids is a tensor with type "long". ``` # Huggingface Models 1. `HoogBERTaEncoder` - [HoogBERTa](https://huggingface.co/new5558/HoogBERTa): `Feature Extraction` and `Mask Language Modeling` 2. `HoogBERTaMuliTaskTagger`: - [HoogBERTa-NER-lst20](https://huggingface.co/new5558/HoogBERTa-NER-lst20): `Named-entity recognition (NER)` based on LST20 - [HoogBERTa-POS-lst20](https://huggingface.co/new5558/HoogBERTa-POS-lst20): `Part-of-speech tagging (POS)` based on LST20 - [HoogBERTa-SENTENCE-lst20](https://huggingface.co/new5558/HoogBERTa-SENTENCE-lst20): `Clause Boundary Classification` based on LST20 # Citation Please cite as: ``` bibtex @inproceedings{porkaew2021hoogberta, title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation}, author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi}, booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)}, year = {2021}, address={Online} } ``` Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing) Check out the code on [Github](https://github.com/lstnlp/HoogBERTa)