Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- 'no'
|
4 |
+
- nb
|
5 |
+
- nn
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- BERT
|
9 |
+
- NorBERT
|
10 |
+
- Norwegian
|
11 |
+
- encoder
|
12 |
+
license: cc-by-4.0
|
13 |
+
---
|
14 |
+
|
15 |
+
# NorBERT 3 large
|
16 |
+
|
17 |
+
|
18 |
+
## Other sizes:
|
19 |
+
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
|
20 |
+
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small)
|
21 |
+
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
|
22 |
+
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)
|
23 |
+
|
24 |
+
|
25 |
+
## Example usage
|
26 |
+
|
27 |
+
This model currently needs a custom wrapper from `modeling_norbert.py`. Then you can use it like this:
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from transformers import AutoTokenizer
|
32 |
+
from modeling_norbert import NorbertForMaskedLM
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(“path/to/folder”)
|
35 |
+
bert = NorbertForMaskedLM.from_pretrained(“path/to/folder”)
|
36 |
+
|
37 |
+
mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
|
38 |
+
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
|
39 |
+
output_p = bert(**input_text)
|
40 |
+
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)
|
41 |
+
|
42 |
+
# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
|
43 |
+
print(tokenizer.decode(output_text[0].tolist()))
|
44 |
+
```
|
45 |
+
|
46 |
+
The following classes are currently implemented: `NorbertForMaskedLM`, `NorbertForSequenceClassification`, `NorbertForTokenClassification`, `NorbertForQuestionAnswering` and `NorbertForMultipleChoice`.
|