File size: 3,153 Bytes
46a92e2
 
 
 
 
 
 
 
 
 
 
0e1ac73
46a92e2
 
9d1af0b
46a92e2
4a2ce68
 
b8e4641
4a2ce68
46a92e2
 
 
 
 
 
 
4a2ce68
 
 
 
 
 
46a92e2
 
 
4a2ce68
46a92e2
 
 
4a2ce68
46a92e2
4a2ce68
 
46a92e2
 
 
57f0e08
46a92e2
 
 
 
 
 
4a2ce68
 
 
 
 
bfe8fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2ce68
bfe8fd3
4a2ce68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- 'no'
- nb
- nn
inference: false
tags:
- BERT
- NorBERT
- Norwegian
- encoder
license: apache-2.0
---

# NorBERT 3 small

<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%>

The official release of a new generation of NorBERT language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://aclanthology.org/2023.nodalida-1.61/). Plese read the paper to learn more details about the model.


## Other sizes:
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small)
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)

## Generative NorT5 siblings:
- [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs)
- [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small)
- [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base)
- [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large)


## Example usage

This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.

```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-small")
model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-small", trust_remote_code=True)

mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
output_p = model(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)

# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))
```

The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.

## Cite us

```bibtex
@inproceedings{samuel-etal-2023-norbench,
    title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
    author = "Samuel, David  and
      Kutuzov, Andrey  and
      Touileb, Samia  and
      Velldal, Erik  and
      {\O}vrelid, Lilja  and
      R{\o}nningstad, Egil  and
      Sigdel, Elina  and
      Palatkina, Anna",
    booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
    month = may,
    year = "2023",
    address = "T{\'o}rshavn, Faroe Islands",
    publisher = "University of Tartu Library",
    url = "https://aclanthology.org/2023.nodalida-1.61",
    pages = "618--633",
    abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.",
}

```