ltg
/

ssa-perin / mtool /treewidth.py
larkkin's picture
Add code and readme
c45d283
import collections
import sys
def make_clique(graph, nodes):
for v1 in nodes:
for v2 in nodes:
if v1 != v2:
graph[v1].add(v2)
def count_fillin(graph, nodes):
"""How many edges would be needed to make v a clique."""
count = 0
for v1 in nodes:
for v2 in nodes:
if v1 != v2 and v2 not in graph[v1]:
count += 1
return count/2
def is_clique(graph, vs):
for v1 in vs:
for v2 in vs:
if v1 != v2 and v2 not in graph[v1]:
return False
return True
def simplicial(graph, v):
return is_clique(graph, graph[v])
def almost_simplicial(graph, v):
for u in graph[v]:
if is_clique(graph, graph[v] - {u}):
return True
return False
def eliminate_node(graph, v):
make_clique(graph, graph[v])
delete_node(graph, v)
def delete_node(graph, v):
for u in graph[v]:
graph[u].remove(v)
del graph[v]
def contract_edge(graph, u, v):
"""Contract edge (u,v) by removing u"""
graph[v] = (graph[v] | graph[u]) - {u, v}
del graph[u]
for w in graph:
if u in graph[w]:
graph[w] = (graph[w] | {v}) - {u, w}
def copy_graph(graph):
return {u:set(graph[u]) for u in graph}
def upper_bound(graph):
"""Min-fill."""
graph = copy_graph(graph)
dmax = 0
order = []
while len(graph) > 0:
#d, u = min((len(graph[u]), u) for u in graph) # min-width
d, u = min((count_fillin(graph, graph[u]), u) for u in graph)
dmax = max(dmax, len(graph[u]))
eliminate_node(graph, u)
order.append(u)
return dmax, order
def lower_bound(graph):
"""Minor-min-width"""
graph = copy_graph(graph)
dmax = 0
while len(graph) > 0:
# pick node of minimum degree
d, u = min((len(graph[u]), u) for u in graph)
dmax = max(dmax, d)
# Gogate and Dechter: minor-min-width
nb = graph[u] - {u}
if len(nb) > 0:
_, v = min((len(graph[v] & nb), v) for v in nb)
contract_edge(graph, u, v)
else:
delete_node(graph, u)
return dmax
class Solution(object):
pass
def quickbb(graph):
"""Gogate and Dechter, A complete anytime algorithm for treewidth. UAI
2004. http://arxiv.org/pdf/1207.4109.pdf"""
"""Given a permutation of the nodes (called an elimination ordering),
for each node, remove the node and make its neighbors into a clique.
The maximum degree of the nodes at the time of their elimination is
the width of the tree decomposition corresponding to that ordering.
The treewidth of the graph is the minimum over all possible
permutations.
"""
best = Solution() # this gets around the lack of nonlocal in Python 2
best.count = 0
def bb(graph, order, f, g):
best.count += 1
if len(graph) < 2:
if f < best.ub:
assert f == g
best.ub = f
best.order = list(order) + list(graph)
else:
vs = []
for v in graph:
# very important pruning rule
if simplicial(graph, v) or almost_simplicial(graph, v) and len(graph[v]) <= lb:
vs = [v]
break
else:
vs.append(v)
for v in vs:
graph1 = copy_graph(graph)
eliminate_node(graph1, v)
order1 = order + [v]
# treewidth for current order so far
g1 = max(g, len(graph[v]))
# lower bound given where we are
f1 = max(g, lower_bound(graph1))
if f1 < best.ub:
bb(graph1, order1, f1, g1)
graph = { u : set(graph[u]) for u in graph }
order = []
best.ub, best.order = upper_bound(graph)
lb = lower_bound(graph)
if lb < best.ub:
bb(graph, order, lb, 0)
# Build the tree decomposition
tree = collections.defaultdict(set)
def build(order):
if len(order) < 2:
bag = frozenset(order)
tree[bag] = set()
return
v = order[0]
clique = graph[v]
eliminate_node(graph, v)
build(order[1:])
for tv in tree:
if clique.issubset(tv):
break
bag = frozenset(clique | {v})
tree[bag].add(tv)
tree[tv].add(bag)
build(best.order)
return tree
if True and __name__ == "__main__":
import fileinput, sys
import graph
s = []
for line in fileinput.input():
if line.lstrip().startswith('#'):
continue
s.append(line)
s = ''.join(s)
i = 0
while i < len(s):
try:
g, i1 = graph.scan_graph(s, start=i, return_end=True)
except:
sys.stderr.write("couldn't read: %s\n" % s[i:i1])
if g is None: break
i = i1
g = g.undirected_graph()
tree = quickbb(g)
print(max(len(tv)-1 for tv in tree))
#print tree
if False and __name__ == "__main__":
import fileinput, sys
g = collections.defaultdict(set)
for line in fileinput.input():
if line.rstrip() == "END":
break
u, v = line.split()
g[u].add(v)
g[v].add(u)
tree = quickbb(g)
root = list(tree)[0]
def visit(tu, indent, memo):
if tu in memo: return
memo.add(tu)
print(" "*indent, " ".join(tu))
for tv in tree[tu]:
visit(tv, indent+2, memo)
visit(root, 0, set())
print("bags:", len(tree))
print("width:", max(len(tv)-1 for tv in tree))