File size: 9,613 Bytes
08b3cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from typing import Optional, Tuple, Union

import torch
from .configuration_aimv2 import AIMv2Config
from torch import nn
from torch.nn import functional as F
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
from transformers.modeling_utils import PreTrainedModel

__all__ = ["AIMv2Model"]


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(dim))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self) -> str:
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

    def _norm(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)


class AIMv2SwiGLUFFN(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        hidden_features = config.intermediate_size
        in_features = config.hidden_size
        bias = config.use_bias

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
        self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.fc1(x)) * self.fc3(x)
        x = self.fc2(x)
        return x


class AIMv2PatchEmbed(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.proj = nn.Conv2d(
            config.num_channels,
            config.hidden_size,
            kernel_size=(config.patch_size, config.patch_size),
            stride=(config.patch_size, config.patch_size),
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x


class AIMv2ViTPreprocessor(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        num_patches = (config.image_size // config.patch_size) ** 2

        self.patchifier = AIMv2PatchEmbed(config)
        self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        tokens = self.patchifier(x)
        _, N, _ = tokens.shape
        pos_embed = self.pos_embed.to(tokens.device)
        tokens = tokens + pos_embed[:, :N]
        return tokens


class AIMv2Attention(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        dim = config.hidden_size

        self.num_heads = config.num_attention_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
        self.attn_drop = nn.Dropout(config.attention_dropout)
        self.proj = nn.Linear(dim, dim, bias=config.use_bias)
        self.proj_drop = nn.Dropout(config.projection_dropout)

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)

        x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
        x = x.transpose(1, 2).contiguous().reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class AIMv2Block(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.attn = AIMv2Attention(config)
        self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = AIMv2SwiGLUFFN(config)
        self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        x = x + self.attn(self.norm_1(x), mask)
        x = x + self.mlp(self.norm_2(x))
        return x


class AIMv2Transformer(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.blocks = nn.ModuleList(
            [AIMv2Block(config) for _ in range(config.num_hidden_layers)]
        )
        self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        tokens: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        output_hidden_states: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
        hidden_states = () if output_hidden_states else None
        for block in self.blocks:
            tokens = block(tokens, mask)
            if output_hidden_states:
                hidden_states += (tokens,)
        tokens = self.post_trunk_norm(tokens)
        return tokens, hidden_states


class AIMv2PretrainedModel(PreTrainedModel):
    config_class = AIMv2Config
    base_model_prefix = "aimv2"
    main_input_name = "pixel_values"
    _supports_sdpa = True


class AIMv2Model(AIMv2PretrainedModel):
    def __init__(self, config: AIMv2Config):
        super().__init__(config)
        self.preprocessor = AIMv2ViTPreprocessor(config)
        self.trunk = AIMv2Transformer(config)

    def forward(
        self,
        pixel_values: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[
        Tuple[torch.Tensor],
        Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
        BaseModelOutputWithNoAttention,
    ]:
        if output_hidden_states is None:
            output_hidden_states = self.config.output_hidden_states
        if return_dict is None:
            return_dict = self.config.use_return_dict

        x = self.preprocessor(pixel_values)
        x, hidden_states = self.trunk(
            x, mask, output_hidden_states=output_hidden_states
        )

        if not return_dict:
            res = (x,)
            res += (hidden_states,) if output_hidden_states else ()
            return res

        return BaseModelOutputWithNoAttention(
            last_hidden_state=x,
            hidden_states=hidden_states,
        )



from functools import partial
from torch import nn
import torch.nn.functional as F
from transformers.activations import ACT2FN
import math
import torch


class GLU(nn.Module):
    def __init__(self, hidden_size, ffn_hidden_size, in_features):
        super().__init__()
        self.linear_proj = nn.Linear(in_features, hidden_size, bias=False)
        self.norm1 = nn.LayerNorm(hidden_size)
        self.act1 = nn.GELU()
        self.act2 = nn.functional.silu
        self.dense_h_to_4h = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
        self.gate_proj = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
        self.dense_4h_to_h = nn.Linear(ffn_hidden_size, hidden_size, bias=False)

    def forward(self, x):
        x = self.linear_proj(x)
        x = self.act1(self.norm1(x))
        x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
        x = self.dense_4h_to_h(x)
        return x


class MlpGLU(nn.Module):
    def __init__(self, in_hidden_size, out_hidden_size):
        super(MlpGLU, self).__init__()
        
        ffn_hidden_size = out_hidden_size * 4  # out_hidden_size * 4 3584 * 4 = 14336
        self.linear_proj = GLU(
            hidden_size=out_hidden_size,
            ffn_hidden_size=ffn_hidden_size,
            in_features=in_hidden_size,
        )
    
    def forward(self, x, attention_mask: torch.Tensor = None):
        x = self.linear_proj(x)
        return x
    
    
class PixelShuffleLayer(nn.Module):

    def __init(self):
        super(PixelShuffleLayer, self).__init__()

    def forward(self, x, scale_factor=0.5):
        # print(f'in pixelshuffle: {x.shape}')
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        x = x.permute(0, 2, 1, 3).contiguous()
        return x
    
    

class PixelShuffleConnector(nn.Module):

    def __init__(self, in_hidden_size, out_hidden_size, down_rate=2):
        super(PixelShuffleConnector, self).__init__()
        # ffn_hidden_size = 13696
        ffn_hidden_size = out_hidden_size * 4  # out_hidden_size * 4 3584 * 4 = 14336
        self.linear_proj = GLU(
            hidden_size=out_hidden_size,
            ffn_hidden_size=ffn_hidden_size,
            in_features=in_hidden_size * 4,
        )
        self.down_rate = down_rate
        if self.down_rate == 2:
            down = PixelShuffleLayer()
            self.downsample = nn.Sequential(*[down])
        else:
            print(f"unsupported downsample rate for now!")
        self.scaling_factor = 8


    def forward(self, x, attention_mask: torch.Tensor = None):
        # print(f'xin: {x.shape}')
        b, s, h = x.shape
        grid_size = int(s**0.5)
        x = x.reshape(b, grid_size, grid_size, h)
        x = self.downsample(x)
        # print(f'x: {x.shape}')
        # [11, 16, 16, 4608]
        x = x.reshape(x.shape[0], -1, x.shape[-1])
        x = self.linear_proj(x)
        return x