File size: 14,438 Bytes
08b3cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3588fe
08b3cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from torch.nn import CrossEntropyLoss

from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
from torch import nn
import torch.nn.functional as F
from .configuration_aimv2 import MonoConfig
from .modeling_aimv2 import AIMv2Model, PixelShuffleConnector
from transformers.generation import GenerationMixin

"""

Simple arch of Mono, used for pretrain vision encoder.

"""


@dataclass
class MonoCausalLMOutputWithPast(ModelOutput):

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


class MonoPretrainedModel(PreTrainedModel):
    config_class = MonoConfig
    base_model_prefix = "mono"
    # main_input_name = "pixel_values"
    _supports_sdpa = True
    _supports_flash_attn_2 = True
    _supports_cache_class = True
    supports_gradient_checkpointing = True


# class MonoForConditionalGeneration(MonoPretrainedModel, Qwen2ForCausalLM):
class MonoForConditionalGeneration(MonoPretrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: MonoConfig):
        # super().__init__(config)
        MonoPretrainedModel.__init__(self, config)
        # super(Qwen2ForCausalLM, self).__init__(config)

        self.vision_tower = AIMv2Model(config=config.vision_config)
        self._attn_implementation = config._attn_implementation

        self._build_image_projection_layers(config)

        self.model = Qwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.pad_token_id = config.pad_token_id
        print(f"==> pad_token_id: {self.pad_token_id}")
        self.post_init()

    def _build_image_projection_layers(self, config):
        image_dim_out = config.vision_config.hidden_size
        dim_projection = config.hidden_size
        # self.mm_projector = nn.Linear(image_dim_out, dim_projection)
        self.mm_projector = PixelShuffleConnector(image_dim_out, dim_projection)
        print(f"==> build mm_projector: {image_dim_out} -> {dim_projection}")

    def get_vision_tower(self):
        return self.vision_tower

    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None
    ) -> nn.Embedding:
        model_embeds = self.model.resize_token_embeddings(
            new_num_tokens, pad_to_multiple_of
        )
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _encode_image(self, pixel_values):
        # print(f"pixel_values: {pixel_values}")
        batch_size, C, H, W = pixel_values.shape
        x = self.vision_tower(pixel_values, output_hidden_states=True)
        x = x.hidden_states[-2]
        # print(x)
        x = self.mm_projector(x)
        # print(f"image features: {x}")
        return x

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        image_features = None
        if inputs_embeds is None:
            if pixel_values is not None:
                # (batch_size, num_image_tokens, hidden_size)
                image_features = self._encode_image(pixel_values)

            if input_ids is not None:
                inputs_embeds, attention_mask, labels = (
                    self._get_input_embeds_with_image(input_ids, image_features, labels)
                )

        # print(f'before inputs_embeds: {inputs_embeds.shape}')
        # print(f'before labels: {labels.shape}')

        # padding all to normal sequence length only train
        # if labels is not None:
        #     input_length = inputs_embeds.shape[1]
        #     label_length = labels.shape[1]

        #     if labels is not None:
        #         labels = F.pad(labels, (input_length, 0), value=-100)

        #     if inputs_embeds is not None:
        #         # append embeds and attn_mask to labels length
        #         padding = torch.zeros(
        #             inputs_embeds.shape[0],
        #             label_length,
        #             inputs_embeds.shape[2],
        #             dtype=inputs_embeds.dtype,
        #             device=inputs_embeds.device,
        #         )
        #         inputs_embeds = torch.cat([inputs_embeds, padding], dim=1)
        #         attention_mask = attention_mask.to(inputs_embeds.dtype)
        #         attention_mask = F.pad(attention_mask, (0, label_length), value=0)

        # if position_ids is None:
        #     position_ids = torch.arange(
        #         input_length + label_length, device=inputs_embeds.device
        #     )
        #     position_ids = position_ids.unsqueeze(0).expand(
        #         inputs_embeds.shape[0], -1
        #     )
        # position_ids[input_length:] = 0

        # print(f"position_ids {position_ids}")
        # print(f"labels {labels.shape}")
        # print(f"labels {labels}")
        # print(f"inputs_embeds {inputs_embeds.shape}")
        # print(f"inputs_embeds {inputs_embeds}")
        # print(f"attention_mask {attention_mask.shape}")
        # print(f"attention_mask {attention_mask}")

        outputs = self.model(
            input_ids=None,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
                    logits.device
                )
                shift_logits = logits[..., :-1, :][
                    shift_attention_mask != 0
                ].contiguous()
                # print(f"shift_logits: {shift_logits.shape}")
                shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
                # print(f"shift_labels: {shift_labels.shape}")
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MonoCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def _get_input_embeds_with_image(self, input_ids, image_features, labels=None):
        # 1. replace image token with features; 2. replace -100 in input_ids into zeroes
        # 3. handling right attention_mask
        # not complicated, you can understand.
        batch_size = input_ids.size(0)
        processed_embeds = []
        processed_masks = []
        labels_ignored_im = []

        max_seq_len = 0
        for idx in range(batch_size):
            seq = input_ids[idx]
            im_pos = (seq == -200).nonzero(as_tuple=True)[0]

            if im_pos.numel() > 0:
                im_pos = im_pos.item()
                before = seq[:im_pos]
                after = seq[im_pos + 1 :]
                # Exclude -100 tokens (maybe, input_ids padding with -100 intentionly)
                before = before[before != -100]
                after = after[after != -100]
                # Get embeddings for before and after
                before_embed = self.get_input_embeddings()(before)
                after_embed = self.get_input_embeddings()(after)
                # Concatenate before, image features, and after
                seq_embed = torch.cat(
                    [before_embed, image_features[idx], after_embed], dim=0
                )
                new_seq_len = seq_embed.size(0)

                # if labels not None, change image token into -100, keep image tokens length
                if labels is not None:
                    image_token_ignore = torch.full(
                        (image_features[idx].shape[0],),
                        -100,
                        dtype=torch.long,
                        device=labels.device,
                    )
                    labels_ignored_im.append(
                        torch.cat(
                            (
                                labels[idx][:im_pos],
                                image_token_ignore,
                                labels[idx][im_pos + 1 :],
                            ),
                            dim=0,
                        )
                    )

            else:
                # Exclude -100 tokens
                valid_tokens = seq[seq != -100]
                seq_embed = self.get_input_embeddings()(valid_tokens)
                new_seq_len = seq_embed.size(0)

            # Update the maximum sequence length
            if new_seq_len > max_seq_len:
                max_seq_len = new_seq_len

            processed_embeds.append(seq_embed)
            attn_mask = torch.ones(new_seq_len, dtype=torch.bool, device=seq.device)
            processed_masks.append(attn_mask)

        # rest embedding is 0, rest mask is False, just padding it
        inputs_embeds = torch.nn.utils.rnn.pad_sequence(
            processed_embeds, batch_first=True, padding_value=0.0
        )
        attn_masks = torch.nn.utils.rnn.pad_sequence(
            processed_masks, batch_first=True, padding_value=0
        )
        if labels is not None:
            labels_ignored_im = torch.stack(labels_ignored_im, dim=0)
            return inputs_embeds, attn_masks, labels_ignored_im
        return inputs_embeds, attn_masks, None

    @torch.no_grad()
    def generate(self, input_ids, pixel_values=None, **kwargs):
        # print(input_ids)
        # print(f"pixel_values {pixel_values}")
        if pixel_values is not None:
            image_features = self._encode_image(pixel_values)
            # print(f"image_features {image_features}")
            inputs_embeds, attention_mask, _ = self._get_input_embeds_with_image(
                input_ids, image_features
            )
        else:
            if input_ids is not None:
                inputs_embeds = self.get_input_embeddings()(input_ids)
                attention_mask = torch.ones(
                    inputs_embeds.size(0),
                    inputs_embeds.size(1),
                    dtype=torch.bool,
                    device=inputs_embeds.device,
                )

        # print(f"inputs_embeds: {inputs_embeds}")
        return super().generate(
            input_ids=None,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **kwargs,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        attention_mask=None,
        **kwargs,
    ):
        # cut input_ids if past_key_values is used
        # if past_key_values is not None:
        #     past_length = past_key_values[0][0].shape[2]

        #     # Some generation methods already pass only the last input ID
        #     if input_ids.shape[1] > past_length:
        #         input_ids = input_ids[:, -1:]
        #     elif input_ids.shape[1] == 1:
        #         pass
        #     else:
        #         # Default to old behavior: keep only final ID
        #         input_ids = input_ids[:, -1:]

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )
        return model_inputs

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self.model.shift_tokens_right(labels)

    def _reorder_cache(self, *args, **kwargs):
        return self.model._reorder_cache(*args, **kwargs)