aimv2-4b-ve / processing_mono.py
lucasjin's picture
Upload folder using huggingface_hub
08b3cf0 verified
raw
history blame
10.2 kB
import re
import logging
from typing import List, Optional, Union
import numpy as np
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import (
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
logger = logging.getLogger(__name__)
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
class MonoProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
# tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
tokens_to_add = {
"additional_special_tokens": tokenizer.additional_special_tokens
+ ["<od>", "</od>", "<ocr>", "</ocr>"]
+ [f"<loc_{x}>" for x in range(1000)]
+ [
"<cap>",
"</cap>",
"<ncap>",
"</ncap>",
"<dcap>",
"</dcap>",
"<grounding>",
"</grounding>",
"<seg>",
"</seg>",
"<sep>",
"<region_cap>",
"</region_cap>",
"<region_to_desciption>",
"</region_to_desciption>",
"<proposal>",
"</proposal>",
"<poly>",
"</poly>",
"<and>",
]
}
tokenizer.add_special_tokens(tokens_to_add)
self.tasks_answer_post_processing_type = {
"<OCR>": "pure_text",
"<OCR_WITH_REGION>": "ocr",
"<CAPTION>": "pure_text",
"<DETAILED_CAPTION>": "pure_text",
"<MORE_DETAILED_CAPTION>": "pure_text",
"<OD>": "description_with_bboxes",
"<DENSE_REGION_CAPTION>": "description_with_bboxes",
"<CAPTION_TO_PHRASE_GROUNDING>": "phrase_grounding",
"<REFERRING_EXPRESSION_SEGMENTATION>": "polygons",
"<REGION_TO_SEGMENTATION>": "polygons",
"<OPEN_VOCABULARY_DETECTION>": "description_with_bboxes_or_polygons",
"<REGION_TO_CATEGORY>": "pure_text",
"<REGION_TO_DESCRIPTION>": "pure_text",
"<REGION_TO_OCR>": "pure_text",
"<REGION_PROPOSAL>": "bboxes",
}
self.task_prompts_without_inputs = {
"<OCR>": "What is the text in the image?",
"<OCR_WITH_REGION>": "What is the text in the image, with regions?",
"<CAPTION>": "What does the image describe?",
"<DETAILED_CAPTION>": "Describe in detail what is shown in the image.",
"<MORE_DETAILED_CAPTION>": "Describe with a paragraph what is shown in the image.",
"<OD>": "Locate the objects with category name in the image.",
"<DENSE_REGION_CAPTION>": "Locate the objects in the image, with their descriptions.",
"<REGION_PROPOSAL>": "Locate the region proposals in the image.",
}
self.task_prompts_with_input = {
"<CAPTION_TO_PHRASE_GROUNDING>": "Locate the phrases in the caption: {input}",
"<REFERRING_EXPRESSION_SEGMENTATION>": "Locate {input} in the image with mask",
"<REGION_TO_SEGMENTATION>": "What is the polygon mask of region {input}",
"<OPEN_VOCABULARY_DETECTION>": "Locate {input} in the image.",
"<REGION_TO_CATEGORY>": "What is the region {input}?",
"<REGION_TO_DESCRIPTION>": "What does the region {input} describe?",
"<REGION_TO_OCR>": "What text is in the region {input}?",
}
super().__init__(image_processor, tokenizer)
def construct_prompts(self, text):
# replace the task tokens with the task prompts if task token is in the text
if isinstance(text, str):
for task_token, task_prompt in self.task_prompts_without_inputs.items():
if task_token in text:
_text = task_prompt
break
return _text
prompts = []
for _text in text:
# 1. fixed task prompts without additional inputs
for task_token, task_prompt in self.task_prompts_without_inputs.items():
if task_token in _text:
assert (
_text == task_token
), f"Task token {task_token} should be the only token in the text."
_text = task_prompt
break
# 2. task prompts with additional inputs
for task_token, task_prompt in self.task_prompts_with_input.items():
if task_token in _text:
_text = task_prompt.format(input=_text.replace(task_token, ""))
break
prompts.append(_text)
return prompts
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
images: ImageInput = None,
tokenize_newline_separately: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
do_resize: bool = None,
size=None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[
Union[str, "ChannelDimension"] # noqa: F821
] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_convert_rgb: bool = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_rescale: bool = None,
) -> BatchFeature:
return_token_type_ids = False
if text is None:
logger.warning_once("You are using Florence-2 without a text prompt.")
text = ""
if isinstance(text, List) and isinstance(images, List):
if len(images) < len(text):
raise ValueError(
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
)
if _is_str_or_image(text):
text = [text]
elif isinstance(text, list) and _is_str_or_image(text[0]):
pass
if images is not None:
pixel_values = self.image_processor(
images,
size=size,
do_resize=do_resize,
do_normalize=do_normalize,
return_tensors=return_tensors,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
data_format=data_format,
resample=resample,
do_convert_rgb=do_convert_rgb,
)["pixel_values"]
# text = self.construct_prompts(text)
inputs = self.tokenizer(
text,
return_tensors=return_tensors,
padding=padding,
max_length=max_length,
truncation=truncation,
return_token_type_ids=return_token_type_ids,
)
if images is not None:
# print(inputs)
# add IMAGE_TOKEN
inputs_with_image = [
torch.cat((torch.tensor([-200]), b), dim=0) for b in inputs["input_ids"]
]
# inputs["input_ids"] = torch.stack(inputs_with_image)
inputs["input_ids"] = inputs_with_image
return_data = {**inputs, "pixel_values": pixel_values}
else:
return_data = {**inputs, "pixel_values": None}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(
inputs["token_type_ids"] == 0, -100
)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))