aimv2-4b-ve / modeling_mono.py
lucasjin's picture
Upload folder using huggingface_hub
f3588fe verified
raw
history blame
14.4 kB
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from torch.nn import CrossEntropyLoss
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
from torch import nn
import torch.nn.functional as F
from .configuration_aimv2 import MonoConfig
from .modeling_aimv2 import AIMv2Model, PixelShuffleConnector
from transformers.generation import GenerationMixin
"""
Simple arch of Mono, used for pretrain vision encoder.
"""
@dataclass
class MonoCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class MonoPretrainedModel(PreTrainedModel):
config_class = MonoConfig
base_model_prefix = "mono"
# main_input_name = "pixel_values"
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_cache_class = True
supports_gradient_checkpointing = True
# class MonoForConditionalGeneration(MonoPretrainedModel, Qwen2ForCausalLM):
class MonoForConditionalGeneration(MonoPretrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MonoConfig):
# super().__init__(config)
MonoPretrainedModel.__init__(self, config)
# super(Qwen2ForCausalLM, self).__init__(config)
self.vision_tower = AIMv2Model(config=config.vision_config)
self._attn_implementation = config._attn_implementation
self._build_image_projection_layers(config)
self.model = Qwen2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.pad_token_id = config.pad_token_id
print(f"==> pad_token_id: {self.pad_token_id}")
self.post_init()
def _build_image_projection_layers(self, config):
image_dim_out = config.vision_config.hidden_size
dim_projection = config.hidden_size
# self.mm_projector = nn.Linear(image_dim_out, dim_projection)
self.mm_projector = PixelShuffleConnector(image_dim_out, dim_projection)
print(f"==> build mm_projector: {image_dim_out} -> {dim_projection}")
def get_vision_tower(self):
return self.vision_tower
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None
) -> nn.Embedding:
model_embeds = self.model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _encode_image(self, pixel_values):
# print(f"pixel_values: {pixel_values}")
batch_size, C, H, W = pixel_values.shape
x = self.vision_tower(pixel_values, output_hidden_states=True)
x = x.hidden_states[-2]
# print(x)
x = self.mm_projector(x)
# print(f"image features: {x}")
return x
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
image_features = None
if inputs_embeds is None:
if pixel_values is not None:
# (batch_size, num_image_tokens, hidden_size)
image_features = self._encode_image(pixel_values)
if input_ids is not None:
inputs_embeds, attention_mask, labels = (
self._get_input_embeds_with_image(input_ids, image_features, labels)
)
# print(f'before inputs_embeds: {inputs_embeds.shape}')
# print(f'before labels: {labels.shape}')
# padding all to normal sequence length only train
# if labels is not None:
# input_length = inputs_embeds.shape[1]
# label_length = labels.shape[1]
# if labels is not None:
# labels = F.pad(labels, (input_length, 0), value=-100)
# if inputs_embeds is not None:
# # append embeds and attn_mask to labels length
# padding = torch.zeros(
# inputs_embeds.shape[0],
# label_length,
# inputs_embeds.shape[2],
# dtype=inputs_embeds.dtype,
# device=inputs_embeds.device,
# )
# inputs_embeds = torch.cat([inputs_embeds, padding], dim=1)
# attention_mask = attention_mask.to(inputs_embeds.dtype)
# attention_mask = F.pad(attention_mask, (0, label_length), value=0)
# if position_ids is None:
# position_ids = torch.arange(
# input_length + label_length, device=inputs_embeds.device
# )
# position_ids = position_ids.unsqueeze(0).expand(
# inputs_embeds.shape[0], -1
# )
# position_ids[input_length:] = 0
# print(f"position_ids {position_ids}")
# print(f"labels {labels.shape}")
# print(f"labels {labels}")
# print(f"inputs_embeds {inputs_embeds.shape}")
# print(f"inputs_embeds {inputs_embeds}")
# print(f"attention_mask {attention_mask.shape}")
# print(f"attention_mask {attention_mask}")
outputs = self.model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
logits.device
)
shift_logits = logits[..., :-1, :][
shift_attention_mask != 0
].contiguous()
# print(f"shift_logits: {shift_logits.shape}")
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
# print(f"shift_labels: {shift_labels.shape}")
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MonoCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _get_input_embeds_with_image(self, input_ids, image_features, labels=None):
# 1. replace image token with features; 2. replace -100 in input_ids into zeroes
# 3. handling right attention_mask
# not complicated, you can understand.
batch_size = input_ids.size(0)
processed_embeds = []
processed_masks = []
labels_ignored_im = []
max_seq_len = 0
for idx in range(batch_size):
seq = input_ids[idx]
im_pos = (seq == -200).nonzero(as_tuple=True)[0]
if im_pos.numel() > 0:
im_pos = im_pos.item()
before = seq[:im_pos]
after = seq[im_pos + 1 :]
# Exclude -100 tokens (maybe, input_ids padding with -100 intentionly)
before = before[before != -100]
after = after[after != -100]
# Get embeddings for before and after
before_embed = self.get_input_embeddings()(before)
after_embed = self.get_input_embeddings()(after)
# Concatenate before, image features, and after
seq_embed = torch.cat(
[before_embed, image_features[idx], after_embed], dim=0
)
new_seq_len = seq_embed.size(0)
# if labels not None, change image token into -100, keep image tokens length
if labels is not None:
image_token_ignore = torch.full(
(image_features[idx].shape[0],),
-100,
dtype=torch.long,
device=labels.device,
)
labels_ignored_im.append(
torch.cat(
(
labels[idx][:im_pos],
image_token_ignore,
labels[idx][im_pos + 1 :],
),
dim=0,
)
)
else:
# Exclude -100 tokens
valid_tokens = seq[seq != -100]
seq_embed = self.get_input_embeddings()(valid_tokens)
new_seq_len = seq_embed.size(0)
# Update the maximum sequence length
if new_seq_len > max_seq_len:
max_seq_len = new_seq_len
processed_embeds.append(seq_embed)
attn_mask = torch.ones(new_seq_len, dtype=torch.bool, device=seq.device)
processed_masks.append(attn_mask)
# rest embedding is 0, rest mask is False, just padding it
inputs_embeds = torch.nn.utils.rnn.pad_sequence(
processed_embeds, batch_first=True, padding_value=0.0
)
attn_masks = torch.nn.utils.rnn.pad_sequence(
processed_masks, batch_first=True, padding_value=0
)
if labels is not None:
labels_ignored_im = torch.stack(labels_ignored_im, dim=0)
return inputs_embeds, attn_masks, labels_ignored_im
return inputs_embeds, attn_masks, None
@torch.no_grad()
def generate(self, input_ids, pixel_values=None, **kwargs):
# print(input_ids)
# print(f"pixel_values {pixel_values}")
if pixel_values is not None:
image_features = self._encode_image(pixel_values)
# print(f"image_features {image_features}")
inputs_embeds, attention_mask, _ = self._get_input_embeds_with_image(
input_ids, image_features
)
else:
if input_ids is not None:
inputs_embeds = self.get_input_embeddings()(input_ids)
attention_mask = torch.ones(
inputs_embeds.size(0),
inputs_embeds.size(1),
dtype=torch.bool,
device=inputs_embeds.device,
)
# print(f"inputs_embeds: {inputs_embeds}")
return super().generate(
input_ids=None,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
**kwargs,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
attention_mask=None,
**kwargs,
):
# cut input_ids if past_key_values is used
# if past_key_values is not None:
# past_length = past_key_values[0][0].shape[2]
# # Some generation methods already pass only the last input ID
# if input_ids.shape[1] > past_length:
# input_ids = input_ids[:, -1:]
# elif input_ids.shape[1] == 1:
# pass
# else:
# # Default to old behavior: keep only final ID
# input_ids = input_ids[:, -1:]
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
**kwargs,
)
return model_inputs
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self.model.shift_tokens_right(labels)
def _reorder_cache(self, *args, **kwargs):
return self.model._reorder_cache(*args, **kwargs)