from typing import Any from transformers.configuration_utils import PretrainedConfig from transformers import Qwen2Config __all__ = ["AIMv2Config", "MonoConfig"] class AIMv2Config(PretrainedConfig): model_type: str = "aimv2" def __init__( self, hidden_size: int = 1024, intermediate_size: int = 2816, num_hidden_layers: int = 24, num_attention_heads: int = 8, num_channels: int = 3, image_size: int = 224, patch_size: int = 14, rms_norm_eps: float = 1e-5, attention_dropout: float = 0.0, projection_dropout: float = 0.0, qkv_bias: bool = False, use_bias: bool = False, text_config=None, **kwargs: Any, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.rms_norm_eps = rms_norm_eps self.projection_dropout = projection_dropout self.qkv_bias = qkv_bias self.use_bias = use_bias class MonoConfig(Qwen2Config): model_type = "mono" is_composition = False def __init__( self, vision_config=None, ignore_index=-100, **kwargs, ): self.ignore_index = ignore_index if vision_config is not None: vision_config = AIMv2Config(**vision_config) self.vision_config = vision_config super().__init__(**kwargs)