from typing import Optional, Tuple, Union import torch from .configuration_aimv2 import AIMv2Config from torch import nn from torch.nn import functional as F from transformers.modeling_outputs import BaseModelOutputWithNoAttention from transformers.modeling_utils import PreTrainedModel __all__ = ["AIMv2Model"] class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(dim)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight def extra_repr(self) -> str: return f"{tuple(self.weight.shape)}, eps={self.eps}" def _norm(self, x: torch.Tensor) -> torch.Tensor: return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) class AIMv2SwiGLUFFN(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() hidden_features = config.intermediate_size in_features = config.hidden_size bias = config.use_bias self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.fc1(x)) * self.fc3(x) x = self.fc2(x) return x class AIMv2PatchEmbed(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() self.proj = nn.Conv2d( config.num_channels, config.hidden_size, kernel_size=(config.patch_size, config.patch_size), stride=(config.patch_size, config.patch_size), ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) return x class AIMv2ViTPreprocessor(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() num_patches = (config.image_size // config.patch_size) ** 2 self.patchifier = AIMv2PatchEmbed(config) self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size))) def forward(self, x: torch.Tensor) -> torch.Tensor: tokens = self.patchifier(x) _, N, _ = tokens.shape pos_embed = self.pos_embed.to(tokens.device) tokens = tokens + pos_embed[:, :N] return tokens class AIMv2Attention(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() dim = config.hidden_size self.num_heads = config.num_attention_heads self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) self.attn_drop = nn.Dropout(config.attention_dropout) self.proj = nn.Linear(dim, dim, bias=config.use_bias) self.proj_drop = nn.Dropout(config.projection_dropout) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask) x = x.transpose(1, 2).contiguous().reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class AIMv2Block(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() self.attn = AIMv2Attention(config) self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp = AIMv2SwiGLUFFN(config) self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: x = x + self.attn(self.norm_1(x), mask) x = x + self.mlp(self.norm_2(x)) return x class AIMv2Transformer(nn.Module): def __init__(self, config: AIMv2Config): super().__init__() self.blocks = nn.ModuleList( [AIMv2Block(config) for _ in range(config.num_hidden_layers)] ) self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, tokens: torch.Tensor, mask: Optional[torch.Tensor] = None, output_hidden_states: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: hidden_states = () if output_hidden_states else None for block in self.blocks: tokens = block(tokens, mask) if output_hidden_states: hidden_states += (tokens,) tokens = self.post_trunk_norm(tokens) return tokens, hidden_states class AIMv2PretrainedModel(PreTrainedModel): config_class = AIMv2Config base_model_prefix = "aimv2" main_input_name = "pixel_values" _supports_sdpa = True class AIMv2Model(AIMv2PretrainedModel): def __init__(self, config: AIMv2Config): super().__init__(config) self.preprocessor = AIMv2ViTPreprocessor(config) self.trunk = AIMv2Transformer(config) def forward( self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ Tuple[torch.Tensor], Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], BaseModelOutputWithNoAttention, ]: if output_hidden_states is None: output_hidden_states = self.config.output_hidden_states if return_dict is None: return_dict = self.config.use_return_dict x = self.preprocessor(pixel_values) x, hidden_states = self.trunk( x, mask, output_hidden_states=output_hidden_states ) if not return_dict: res = (x,) res += (hidden_states,) if output_hidden_states else () return res return BaseModelOutputWithNoAttention( last_hidden_state=x, hidden_states=hidden_states, ) from functools import partial from torch import nn import torch.nn.functional as F from transformers.activations import ACT2FN import math import torch class GLU(nn.Module): def __init__(self, hidden_size, ffn_hidden_size, in_features): super().__init__() self.linear_proj = nn.Linear(in_features, hidden_size, bias=False) self.norm1 = nn.LayerNorm(hidden_size) self.act1 = nn.GELU() self.act2 = nn.functional.silu self.dense_h_to_4h = nn.Linear(hidden_size, ffn_hidden_size, bias=False) self.gate_proj = nn.Linear(hidden_size, ffn_hidden_size, bias=False) self.dense_4h_to_h = nn.Linear(ffn_hidden_size, hidden_size, bias=False) def forward(self, x): x = self.linear_proj(x) x = self.act1(self.norm1(x)) x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x) x = self.dense_4h_to_h(x) return x class MlpGLU(nn.Module): def __init__(self, in_hidden_size, out_hidden_size): super(MlpGLU, self).__init__() ffn_hidden_size = out_hidden_size * 4 # out_hidden_size * 4 3584 * 4 = 14336 self.linear_proj = GLU( hidden_size=out_hidden_size, ffn_hidden_size=ffn_hidden_size, in_features=in_hidden_size, ) def forward(self, x, attention_mask: torch.Tensor = None): x = self.linear_proj(x) return x class PixelShuffleLayer(nn.Module): def __init(self): super(PixelShuffleLayer, self).__init__() def forward(self, x, scale_factor=0.5): # print(f'in pixelshuffle: {x.shape}') n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) x = x.permute(0, 2, 1, 3).contiguous() return x class PixelShuffleConnector(nn.Module): def __init__(self, in_hidden_size, out_hidden_size, down_rate=2): super(PixelShuffleConnector, self).__init__() # ffn_hidden_size = 13696 ffn_hidden_size = out_hidden_size * 4 # out_hidden_size * 4 3584 * 4 = 14336 self.linear_proj = GLU( hidden_size=out_hidden_size, ffn_hidden_size=ffn_hidden_size, in_features=in_hidden_size * 4, ) self.down_rate = down_rate if self.down_rate == 2: down = PixelShuffleLayer() self.downsample = nn.Sequential(*[down]) else: print(f"unsupported downsample rate for now!") self.scaling_factor = 8 def forward(self, x, attention_mask: torch.Tensor = None): # print(f'xin: {x.shape}') b, s, h = x.shape grid_size = int(s**0.5) x = x.reshape(b, grid_size, grid_size, h) x = self.downsample(x) # print(f'x: {x.shape}') # [11, 16, 16, 4608] x = x.reshape(x.shape[0], -1, x.shape[-1]) x = self.linear_proj(x) return x