Tarun Jain

lucifertrj

AI & ML interests

Deep Learning, FPGA, and ML

Recent Activity

Articles

Organizations

Keras's profile picture Keras Dreambooth Event's profile picture Anime Vyuh's profile picture Blog-explorers's profile picture AI Planet's profile picture MLX Community's profile picture Social Post Explorers's profile picture Red Hen Lab's profile picture

lucifertrj's activity

posted an update 20 days ago
view post
Post
497
Image Prompt Engineering Guide:
➡️ Artistic styling for Image generation
➡️ Prompt weighting using the parentheses method to generate realistic images.
➡️ Advanced features like style and positioning control[experimental].
➡️ Image placement on the generated AI image using Recraft V3 Mockup.

Watch: https://www.youtube.com/watch?v=d3nUG28-jIc
posted an update 3 months ago
view post
Post
1529
AI Agents LlamaIndex in 40 minutes

The video covers code and workflow explanations for:

- Function Calling
- Function Calling Agents + Agent Runner
- Agentic RAG
- REAcT Agent: Build your own Search Assistant Agent

Watch: https://youtu.be/bHn4dLJYIqE
posted an update 7 months ago
view post
Post
1695
Observability and Retrieval Augmented Generation in 10 lines of Code

Tutorial: https://www.youtube.com/watch?v=VCQ0Cw-GF2U

This video covers:
- Why we need observability?
- Implementation of RAG using BeyondLLM
- Monitor and Track LLM Observability using Phoenix
reacted to their post with 👀 7 months ago
view post
Post
2256
Advanced RAG - Hybrid Search using HuggingFace Models

Chat with PDF in 10 lines of code:

# pip install beyondllm
# pip install llama-index-embeddings-fastembed

from beyondllm import source,retrieve,embeddings,llms,generator
import os
from getpass import getpass
os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:")

data = source.fit("sample.pdf", dtype="pdf")
embed_model = embeddings.FastEmbedEmbeddings()

retriever = auto_retriever(
    data=data, embed_model=embed_model,
    type="hybrid", top_k=5, mode="OR"
)

llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2")
pipeline = generator.Generate(question="<replace-with-your-query>",llm=llm,retriever=retriever)
print(pipeline.call())


Cookbook: https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb

Support the project by giving a ⭐️ to the repo
posted an update 7 months ago
view post
Post
2256
Advanced RAG - Hybrid Search using HuggingFace Models

Chat with PDF in 10 lines of code:

# pip install beyondllm
# pip install llama-index-embeddings-fastembed

from beyondllm import source,retrieve,embeddings,llms,generator
import os
from getpass import getpass
os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:")

data = source.fit("sample.pdf", dtype="pdf")
embed_model = embeddings.FastEmbedEmbeddings()

retriever = auto_retriever(
    data=data, embed_model=embed_model,
    type="hybrid", top_k=5, mode="OR"
)

llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2")
pipeline = generator.Generate(question="<replace-with-your-query>",llm=llm,retriever=retriever)
print(pipeline.call())


Cookbook: https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb

Support the project by giving a ⭐️ to the repo
replied to their post 7 months ago
replied to their post 7 months ago
posted an update 7 months ago
view post
Post
1853
Evaluate RAG using Open Source from HuggingFace using BeyondLLM

# pip install beyondllm
# pip install huggingface_hub
# pip install llama-index-embeddings-fastembed

from beyondllm.source import fit
from beyondllm.embeddings import FastEmbedEmbeddings
from beyondllm.retrieve import auto_retriever
from beyondllm.llms import HuggingFaceHubModel
from beyondllm.generator import Generate

import os
from getpass import getpass
os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:")

data = fit("RedHenLab_GSoC_Tarun.pdf",dtype="pdf")
embed_model = FastEmbedEmbeddings()
retriever = auto_retriever(data=data,embed_model=embed_model,type="normal",top_k=3)
llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2")
pipeline = Generate(question="what models has Tarun fine-tuned?",llm=llm,retriever=retriever)

print(pipeline.call()) # Return the AI response
print(pipeline.get_rag_triad_evals())


GitHub: https://github.com/aiplanethub/beyondllm

Don't forget to ⭐️ the repo
·