File size: 4,408 Bytes
4d253b0
63d0ec4
 
4d253b0
 
63d0ec4
 
4d253b0
63d0ec4
4d253b0
63d0ec4
4d253b0
63d0ec4
 
 
 
 
 
 
 
 
 
118e13d
 
 
 
 
 
 
63d0ec4
 
118e13d
63d0ec4
 
4d253b0
 
 
 
 
63d0ec4
4d253b0
63d0ec4
fcbf49b
63d0ec4
 
 
4d253b0
 
 
63d0ec4
 
 
4d253b0
118e13d
 
4d253b0
 
63d0ec4
 
 
 
 
4d253b0
 
 
fcbf49b
4d253b0
 
 
fcbf49b
63d0ec4
4d253b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
language:
- ky
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M Kyrgiz CV8
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: ky
    metrics:
       - name: Test WER (with LM)
         type: wer
         value: 19.01
       - name: Test CER (with LM)
         type: cer
         value: 5.38
       - name: Test WER (no LM)
         type: wer
         value: 31.28
       - name: Test CER (no LM)
         type: cer
         value: 7.66
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-300M Kyrgiz CV8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KY dataset.
It achieves the following results on the validation set:
- Loss: 0.5497
- Wer: 0.2945
- Cer: 0.0791

## Model description

For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)

The model vocabulary consists of the cyrillic alphabet with punctuation removed.

The kenlm language model is built using the text of the train and invalidated corpus splits.

## Intended uses & limitations

This model is expected to be of some utility for low-fidelity use cases such as:
- Draft video captions
- Indexing of recorded broadcasts

The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.

## Training and evaluation data

The combination of `train`, `dev` and `other` of common voice official splits were used as training data. The half of the official `test` split was used as validation data, as and the full `test` set was used for final evaluation.

## Training procedure

The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Kyrgiz CV8 example sentences. A ramped learning rate is used with an initial warmup phase of 500 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 8100 steps (300 epochs).

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 300.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 3.1079        | 18.51  | 500  | 2.6795          | 0.9996 | 0.9825 |
| 0.8506        | 37.04  | 1000 | 0.4323          | 0.3718 | 0.0961 |
| 0.6821        | 55.55  | 1500 | 0.4105          | 0.3311 | 0.0878 |
| 0.6091        | 74.07  | 2000 | 0.4281          | 0.3168 | 0.0851 |
| 0.5429        | 92.58  | 2500 | 0.4525          | 0.3147 | 0.0842 |
| 0.5063        | 111.11 | 3000 | 0.4619          | 0.3144 | 0.0839 |
| 0.4661        | 129.62 | 3500 | 0.4660          | 0.3039 | 0.0818 |
| 0.4353        | 148.15 | 4000 | 0.4695          | 0.3083 | 0.0820 |
| 0.4048        | 166.65 | 4500 | 0.4909          | 0.3085 | 0.0824 |
| 0.3852        | 185.18 | 5000 | 0.5074          | 0.3048 | 0.0812 |
| 0.3567        | 203.69 | 5500 | 0.5111          | 0.3012 | 0.0810 |
| 0.3451        | 222.22 | 6000 | 0.5225          | 0.2982 | 0.0804 |
| 0.325         | 240.73 | 6500 | 0.5270          | 0.2955 | 0.0796 |
| 0.3089        | 259.25 | 7000 | 0.5381          | 0.2929 | 0.0793 |
| 0.2941        | 277.76 | 7500 | 0.5565          | 0.2923 | 0.0794 |
| 0.2945        | 296.29 | 8000 | 0.5495          | 0.2951 | 0.0789 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0