File size: 5,071 Bytes
9636944
 
 
 
 
 
 
 
b6fa3be
 
c6145a2
9636944
b6fa3be
9636944
b6fa3be
 
c6145a2
 
b6fa3be
 
 
 
 
 
c6145a2
 
 
 
 
 
9636944
 
b6fa3be
9636944
 
 
27b26a4
 
9636944
 
 
b6fa3be
 
 
9636944
 
 
b6fa3be
 
 
 
 
9636944
 
 
b6fa3be
9636944
 
 
b6fa3be
 
9636944
 
 
27b26a4
9636944
 
 
 
 
 
 
 
27b26a4
9636944
 
 
 
27b26a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9636944
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- ug
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- ug
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M Uyghur CV7
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: ug
    metrics:
    - name: Test WER
      type: wer
      value: 25.845
    - name: Test CER
      type: cer
      value: 4.795
---

# XLS-R-300M Uyghur CV7

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1772
- Wer: 0.2589

## Model description

For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)

The model vocabulary consists of the alphabetic characters of the [Perso-Arabic script for the Uyghur language](https://omniglot.com/writing/uyghur.htm), with punctuation removed.

## Intended uses & limitations

This model is expected to be of some utility for low-fidelity use cases such as:
- Draft video captions
- Indexing of recorded broadcasts

The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.

## Training and evaluation data

The combination of `train` and `dev` of common voice official splits were used as training data. The official `test` split was used as validation data as well as for final evaluation.

## Training procedure

The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Uyghur CV7 example sentences. A ramped learning rate is used with an initial warmup phase of 2000 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 18500 steps (100 epochs).

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.3043        | 2.73  | 500   | 3.2415          | 1.0    |
| 3.0482        | 5.46  | 1000  | 2.9591          | 1.0    |
| 1.4767        | 8.2   | 1500  | 0.4779          | 0.5777 |
| 1.3152        | 10.93 | 2000  | 0.3697          | 0.4938 |
| 1.2246        | 13.66 | 2500  | 0.3084          | 0.4459 |
| 1.1781        | 16.39 | 3000  | 0.2842          | 0.4154 |
| 1.1351        | 19.13 | 3500  | 0.2615          | 0.3929 |
| 1.1052        | 21.86 | 4000  | 0.2462          | 0.3747 |
| 1.0711        | 24.59 | 4500  | 0.2366          | 0.3652 |
| 1.035         | 27.32 | 5000  | 0.2268          | 0.3557 |
| 1.0277        | 30.05 | 5500  | 0.2243          | 0.3450 |
| 1.002         | 32.79 | 6000  | 0.2204          | 0.3389 |
| 0.9837        | 35.52 | 6500  | 0.2156          | 0.3349 |
| 0.9773        | 38.25 | 7000  | 0.2127          | 0.3289 |
| 0.9807        | 40.98 | 7500  | 0.2142          | 0.3274 |
| 0.9582        | 43.72 | 8000  | 0.2004          | 0.3142 |
| 0.9548        | 46.45 | 8500  | 0.2022          | 0.3050 |
| 0.9251        | 49.18 | 9000  | 0.2019          | 0.3035 |
| 0.9103        | 51.91 | 9500  | 0.1964          | 0.3021 |
| 0.915         | 54.64 | 10000 | 0.1970          | 0.3032 |
| 0.8962        | 57.38 | 10500 | 0.2007          | 0.3046 |
| 0.8729        | 60.11 | 11000 | 0.1967          | 0.2942 |
| 0.8744        | 62.84 | 11500 | 0.1952          | 0.2885 |
| 0.874         | 65.57 | 12000 | 0.1894          | 0.2895 |
| 0.8457        | 68.31 | 12500 | 0.1895          | 0.2828 |
| 0.8519        | 71.04 | 13000 | 0.1912          | 0.2875 |
| 0.8301        | 73.77 | 13500 | 0.1878          | 0.2760 |
| 0.8226        | 76.5  | 14000 | 0.1808          | 0.2701 |
| 0.8071        | 79.23 | 14500 | 0.1849          | 0.2741 |
| 0.7999        | 81.97 | 15000 | 0.1808          | 0.2717 |
| 0.7947        | 84.7  | 15500 | 0.1821          | 0.2716 |
| 0.7783        | 87.43 | 16000 | 0.1824          | 0.2661 |
| 0.7729        | 90.16 | 16500 | 0.1773          | 0.2639 |
| 0.7759        | 92.9  | 17000 | 0.1767          | 0.2629 |
| 0.7713        | 95.63 | 17500 | 0.1780          | 0.2621 |
| 0.7628        | 98.36 | 18000 | 0.1773          | 0.2594 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0