update model card README.md
Browse files
README.md
CHANGED
@@ -20,8 +20,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Wer: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -40,7 +40,7 @@ More information needed
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
- learning_rate:
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
@@ -49,31 +49,50 @@ The following hyperparameters were used during training:
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
-
- num_epochs:
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step
|
58 |
-
|
59 |
-
|
|
60 |
-
| 3.
|
61 |
-
|
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2240
|
24 |
+
- Wer: 0.3693
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 4e-05
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
+
- num_epochs: 100.0
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
59 |
+
| 4.1169 | 2.66 | 500 | 4.0146 | 1.0 |
|
60 |
+
| 3.2512 | 5.32 | 1000 | 3.2342 | 1.0 |
|
61 |
+
| 2.5435 | 7.97 | 1500 | 1.8155 | 1.0286 |
|
62 |
+
| 1.5575 | 10.64 | 2000 | 0.6346 | 0.7058 |
|
63 |
+
| 1.3979 | 13.3 | 2500 | 0.4885 | 0.6320 |
|
64 |
+
| 1.2874 | 15.95 | 3000 | 0.4271 | 0.6088 |
|
65 |
+
| 1.2383 | 18.61 | 3500 | 0.3889 | 0.5869 |
|
66 |
+
| 1.2054 | 21.28 | 4000 | 0.3609 | 0.5793 |
|
67 |
+
| 1.1866 | 23.93 | 4500 | 0.3450 | 0.5513 |
|
68 |
+
| 1.1332 | 26.59 | 5000 | 0.3214 | 0.5379 |
|
69 |
+
| 1.135 | 29.25 | 5500 | 0.3122 | 0.5384 |
|
70 |
+
| 1.0992 | 31.91 | 6000 | 0.2948 | 0.5078 |
|
71 |
+
| 1.0707 | 34.57 | 6500 | 0.2928 | 0.5128 |
|
72 |
+
| 1.0754 | 37.23 | 7000 | 0.2857 | 0.5017 |
|
73 |
+
| 1.0461 | 39.89 | 7500 | 0.2791 | 0.5099 |
|
74 |
+
| 1.0328 | 42.55 | 8000 | 0.2729 | 0.5120 |
|
75 |
+
| 1.0201 | 45.21 | 8500 | 0.2654 | 0.4720 |
|
76 |
+
| 1.0035 | 47.87 | 9000 | 0.2623 | 0.4659 |
|
77 |
+
| 1.0069 | 50.53 | 9500 | 0.2569 | 0.4593 |
|
78 |
+
| 0.9998 | 53.19 | 10000 | 0.2519 | 0.4405 |
|
79 |
+
| 0.9762 | 55.85 | 10500 | 0.2505 | 0.4588 |
|
80 |
+
| 0.9755 | 58.51 | 11000 | 0.2479 | 0.4564 |
|
81 |
+
| 0.9624 | 61.17 | 11500 | 0.2460 | 0.4298 |
|
82 |
+
| 0.9494 | 63.83 | 12000 | 0.2402 | 0.4182 |
|
83 |
+
| 0.948 | 66.49 | 12500 | 0.2412 | 0.4212 |
|
84 |
+
| 0.9312 | 69.15 | 13000 | 0.2352 | 0.3970 |
|
85 |
+
| 0.9172 | 71.81 | 13500 | 0.2357 | 0.3926 |
|
86 |
+
| 0.9101 | 74.47 | 14000 | 0.2305 | 0.3905 |
|
87 |
+
| 0.9177 | 77.13 | 14500 | 0.2307 | 0.3838 |
|
88 |
+
| 0.9083 | 79.78 | 15000 | 0.2313 | 0.3800 |
|
89 |
+
| 0.9068 | 82.45 | 15500 | 0.2275 | 0.3742 |
|
90 |
+
| 0.9087 | 85.11 | 16000 | 0.2283 | 0.3747 |
|
91 |
+
| 0.8838 | 87.76 | 16500 | 0.2286 | 0.3777 |
|
92 |
+
| 0.8868 | 90.42 | 17000 | 0.2269 | 0.3722 |
|
93 |
+
| 0.8895 | 93.08 | 17500 | 0.2246 | 0.3714 |
|
94 |
+
| 0.8926 | 95.74 | 18000 | 0.2241 | 0.3705 |
|
95 |
+
| 0.8856 | 98.4 | 18500 | 0.2242 | 0.3693 |
|
96 |
|
97 |
|
98 |
### Framework versions
|