|
|
|
import argparse |
|
import functools |
|
import re |
|
from typing import Dict |
|
|
|
from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric |
|
|
|
from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline |
|
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
"""DO NOT CHANGE. This function computes and logs the result metrics.""" |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str) -> str: |
|
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" |
|
|
|
chars_to_ignore_regex = '[!"%,.:;?\\_|©«¬»،؛؟‒–—’“”„…‹›−☺♂�\\\\-]' |
|
|
|
text = re.sub(chars_to_ignore_regex, "", text.lower()) |
|
|
|
|
|
|
|
token_sequences_to_ignore = ["\n\n", "\n", " ", " "] |
|
|
|
for t in token_sequences_to_ignore: |
|
text = " ".join(text.split(t)) |
|
|
|
return text |
|
|
|
|
|
def create_vocabulary_from_data( |
|
datasets: DatasetDict, |
|
word_delimiter_token = None, |
|
unk_token = None, |
|
pad_token = None, |
|
): |
|
|
|
def extract_all_chars(batch): |
|
all_text = " ".join(batch["target"]) |
|
vocab = list(set(all_text)) |
|
return {"vocab": [vocab], "all_text": [all_text]} |
|
|
|
vocabs = datasets.map( |
|
extract_all_chars, |
|
batched=True, |
|
batch_size=-1, |
|
keep_in_memory=True, |
|
remove_columns=datasets["test"].column_names, |
|
) |
|
|
|
|
|
vocab_dict = {v: k for k, v in enumerate(sorted(vocabs["test"]["vocab"][0]))} |
|
|
|
|
|
if word_delimiter_token is not None: |
|
vocab_dict[word_delimiter_token] = vocab_dict[" "] |
|
del vocab_dict[" "] |
|
|
|
|
|
if unk_token is not None: |
|
vocab_dict[unk_token] = len(vocab_dict) |
|
|
|
if pad_token is not None: |
|
vocab_dict[pad_token] = len(vocab_dict) |
|
|
|
return vocab_dict |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) |
|
|
|
|
|
dataset = dataset.select(range(10)) |
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
|
|
|
asr = pipeline("automatic-speech-recognition", model=args.model_id) |
|
|
|
|
|
def map_to_pred(batch): |
|
prediction = asr( |
|
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s |
|
) |
|
|
|
batch["prediction"] = prediction["text"] |
|
batch["target"] = normalize_text(batch["sentence"]) |
|
return batch |
|
|
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
if args.check_vocab: |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
unk_token = "[UNK]" |
|
pad_token = "[PAD]" |
|
word_delimiter_token = "|" |
|
raw_datasets = DatasetDict({"test": result}) |
|
vocab_dict = create_vocabulary_from_data( |
|
raw_datasets, |
|
word_delimiter_token=word_delimiter_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
) |
|
print(vocab_dict) |
|
print("OOV chars:", set(vocab_dict) - set(tokenizer.get_vocab())) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
required=True, |
|
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", |
|
) |
|
parser.add_argument( |
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" |
|
) |
|
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") |
|
parser.add_argument( |
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." |
|
) |
|
parser.add_argument( |
|
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." |
|
) |
|
parser.add_argument( |
|
"--check_vocab", action="store_true", help="Verify that normalized target text is within character set" |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|