update model card README.md
Browse files
README.md
CHANGED
@@ -1,64 +1,93 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- uz
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
-
- automatic-speech-recognition
|
7 |
-
- mozilla-foundation/common_voice_8_0
|
8 |
- generated_from_trainer
|
9 |
-
- robust-speech-event
|
10 |
datasets:
|
11 |
-
-
|
12 |
model-index:
|
13 |
-
- name:
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
name: Automatic Speech Recognition
|
17 |
-
type: automatic-speech-recognition
|
18 |
-
dataset:
|
19 |
-
name: Common Voice 8
|
20 |
-
type: mozilla-foundation/common_voice_8_0
|
21 |
-
args: uz
|
22 |
-
metrics:
|
23 |
-
- name: Test WER
|
24 |
-
type: wer
|
25 |
-
value: 40.56
|
26 |
-
- name: Test CER
|
27 |
-
type: cer
|
28 |
-
value: 8.25
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
should probably proofread and complete it, then remove this comment. -->
|
33 |
|
34 |
-
#
|
35 |
|
36 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
The model vocabulary consists of the [Modern Latin alphabet for Uzbek](https://en.wikipedia.org/wiki/Uzbek_alphabet), with punctuation removed.
|
43 |
-
Note that the characters ‘ and ’ do not count as punctuation, as ‘ modifies <o> and <g>, and ’ indicates the glottal stop.
|
44 |
|
45 |
## Intended uses & limitations
|
46 |
|
47 |
-
|
48 |
-
- Draft video captions
|
49 |
-
- Indexing of recorded broadcasts
|
50 |
-
|
51 |
-
The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.
|
52 |
|
53 |
## Training and evaluation data
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
### Framework versions
|
59 |
|
60 |
-
- Transformers 4.
|
61 |
- Pytorch 1.10.2+cu102
|
62 |
- Datasets 1.18.3
|
63 |
- Tokenizers 0.11.0
|
64 |
-
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
|
|
5 |
datasets:
|
6 |
+
- common_voice
|
7 |
model-index:
|
8 |
+
- name: xls-r-uzbek-cv8
|
9 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# xls-r-uzbek-cv8
|
16 |
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3066
|
20 |
+
- Wer: 0.3855
|
21 |
+
- Cer: 0.0778
|
22 |
|
23 |
## Model description
|
24 |
|
25 |
+
More information needed
|
|
|
|
|
|
|
26 |
|
27 |
## Intended uses & limitations
|
28 |
|
29 |
+
More information needed
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Training and evaluation data
|
32 |
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 100.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
56 |
+
| 3.1401 | 3.25 | 500 | 3.1146 | 1.0 | 1.0 |
|
57 |
+
| 2.7484 | 6.49 | 1000 | 2.2842 | 1.0065 | 0.7069 |
|
58 |
+
| 1.0899 | 9.74 | 1500 | 0.5414 | 0.6125 | 0.1351 |
|
59 |
+
| 0.9465 | 12.99 | 2000 | 0.4566 | 0.5635 | 0.1223 |
|
60 |
+
| 0.8771 | 16.23 | 2500 | 0.4212 | 0.5366 | 0.1161 |
|
61 |
+
| 0.8346 | 19.48 | 3000 | 0.3994 | 0.5144 | 0.1102 |
|
62 |
+
| 0.8127 | 22.73 | 3500 | 0.3819 | 0.4944 | 0.1051 |
|
63 |
+
| 0.7833 | 25.97 | 4000 | 0.3705 | 0.4798 | 0.1011 |
|
64 |
+
| 0.7603 | 29.22 | 4500 | 0.3661 | 0.4704 | 0.0992 |
|
65 |
+
| 0.7424 | 32.47 | 5000 | 0.3529 | 0.4577 | 0.0957 |
|
66 |
+
| 0.7251 | 35.71 | 5500 | 0.3410 | 0.4473 | 0.0928 |
|
67 |
+
| 0.7106 | 38.96 | 6000 | 0.3401 | 0.4428 | 0.0919 |
|
68 |
+
| 0.7027 | 42.21 | 6500 | 0.3355 | 0.4353 | 0.0905 |
|
69 |
+
| 0.6927 | 45.45 | 7000 | 0.3308 | 0.4296 | 0.0885 |
|
70 |
+
| 0.6828 | 48.7 | 7500 | 0.3246 | 0.4204 | 0.0863 |
|
71 |
+
| 0.6706 | 51.95 | 8000 | 0.3250 | 0.4233 | 0.0868 |
|
72 |
+
| 0.6629 | 55.19 | 8500 | 0.3264 | 0.4159 | 0.0849 |
|
73 |
+
| 0.6556 | 58.44 | 9000 | 0.3213 | 0.4100 | 0.0835 |
|
74 |
+
| 0.6484 | 61.69 | 9500 | 0.3182 | 0.4124 | 0.0837 |
|
75 |
+
| 0.6407 | 64.93 | 10000 | 0.3171 | 0.4050 | 0.0825 |
|
76 |
+
| 0.6375 | 68.18 | 10500 | 0.3150 | 0.4039 | 0.0822 |
|
77 |
+
| 0.6363 | 71.43 | 11000 | 0.3129 | 0.3991 | 0.0810 |
|
78 |
+
| 0.6307 | 74.67 | 11500 | 0.3114 | 0.3986 | 0.0807 |
|
79 |
+
| 0.6232 | 77.92 | 12000 | 0.3103 | 0.3895 | 0.0790 |
|
80 |
+
| 0.6216 | 81.17 | 12500 | 0.3086 | 0.3891 | 0.0790 |
|
81 |
+
| 0.6174 | 84.41 | 13000 | 0.3082 | 0.3881 | 0.0785 |
|
82 |
+
| 0.6196 | 87.66 | 13500 | 0.3059 | 0.3875 | 0.0782 |
|
83 |
+
| 0.6174 | 90.91 | 14000 | 0.3084 | 0.3862 | 0.0780 |
|
84 |
+
| 0.6169 | 94.16 | 14500 | 0.3070 | 0.3860 | 0.0779 |
|
85 |
+
| 0.6166 | 97.4 | 15000 | 0.3066 | 0.3855 | 0.0778 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
+
- Transformers 4.16.2
|
91 |
- Pytorch 1.10.2+cu102
|
92 |
- Datasets 1.18.3
|
93 |
- Tokenizers 0.11.0
|
|