--- base_model: openai/whisper-large-v3 datasets: - b-brave/speech_disorders_voice language: - it library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Medium results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: b-brave/speech_disorders_voice type: b-brave/speech_disorders_voice config: default split: train args: default metrics: - type: wer value: 100.0 name: Wer --- # Whisper Medium This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the b-brave/speech_disorders_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1865 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 48 - training_steps: 256 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.423 | 0.375 | 48 | 0.3535 | 106.0166 | | 0.3121 | 0.75 | 96 | 0.2261 | 100.0 | | 0.2534 | 1.125 | 144 | 0.1995 | 100.0 | | 0.147 | 1.5 | 192 | 0.1973 | 99.7925 | | 0.1161 | 1.875 | 240 | 0.1865 | 100.0 | ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1