luka023 commited on
Commit
87413fc
·
verified ·
1 Parent(s): 8f555ce

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-33/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: djovak/embedic-large
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.12450794875621796
25
+
26
+ cosine_accuracy: 1.0
27
+
28
+ dot_accuracy: 0.0
29
+
30
+ manhattan_accuracy: 1.0
31
+
32
+ euclidean_accuracy: 1.0
33
+
34
+ max_accuracy: 1.0
35
+
36
+ runtime: 58.713
37
+
38
+ samples_per_second: 0.766
39
+
40
+ steps_per_second: 0.051
41
+
42
+ : 8.909090909090908
43
+
44
+ ## Usage
45
+
46
+ ### Direct Usage (Sentence Transformers)
47
+
48
+ First install the Sentence Transformers library:
49
+
50
+ ```bash
51
+ pip install -U sentence-transformers
52
+ ```
53
+
54
+ Then you can load this model and run inference.
55
+ ```python
56
+ from sentence_transformers import SentenceTransformer
57
+
58
+ # Download from the Hugging Face Hub
59
+ model = SentenceTransformer("sentence_transformers_model_id")
60
+ # Run inference
61
+ sentences = [
62
+ 'search_query: autotrain',
63
+ 'search_query: auto train',
64
+ 'search_query: i love autotrain',
65
+ ]
66
+ embeddings = model.encode(sentences)
67
+ print(embeddings.shape)
68
+
69
+ # Get the similarity scores for the embeddings
70
+ similarities = model.similarity(embeddings, embeddings)
71
+ print(similarities.shape)
72
+ ```
checkpoint-33/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-33/README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: djovak/embedic-large
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - dot_accuracy
7
+ - manhattan_accuracy
8
+ - euclidean_accuracy
9
+ - max_accuracy
10
+ pipeline_tag: sentence-similarity
11
+ tags:
12
+ - sentence-transformers
13
+ - sentence-similarity
14
+ - feature-extraction
15
+ - generated_from_trainer
16
+ - dataset_size:176
17
+ - loss:MultipleNegativesRankingLoss
18
+ widget:
19
+ - source_sentence: Kako Meridian kladionica tretira odlaganja?
20
+ sentences:
21
+ - Klađenje na dubl se razlikuje od singla, gde timska hemija i tehnika igrača poput
22
+ voleja i servisa igraju ključnu ulogu.
23
+ - Važno je pratiti formu igrača, promene u servisu i povrede kako biste doneli informisane
24
+ odluke u klađenju uživo na tenis.
25
+ - Meridian kladionica računa kvotu 1.00 ako se utakmica ne odigra u roku od sledećeg
26
+ dana od planiranog termina.
27
+ - source_sentence: Šta je hajnc sistem klađenja?
28
+ sentences:
29
+ - Loši vremenski uslovi, kao što su kiša ili sneg, mogu otežati igru i smanjiti
30
+ broj golova.
31
+ - Hajnc je kombinovani sistem klađenja koji uključuje šest događaja i ukupno 57
32
+ pojedinačnih opklada.
33
+ - Za razliku od drugih sportova, vremenski uslovi ne utiču direktno na košarkaške
34
+ mečeve, ali povrede ili izostanci igrača mogu značajno promeniti ishod.
35
+ - source_sentence: Kako funkcioniše klađenje na poluvreme/kraj?
36
+ sentences:
37
+ - Ako se utakmica odloži za više od 48 sati, kvota postaje 1.00 i ulog se vraća,
38
+ osim ako su ostali parovi na tiketu.
39
+ - Ova vrsta klađenja zahteva predviđanje ishoda i na poluvremenu i na kraju utakmice.
40
+ Na primer, opklada 1-2 znači da domaćin vodi na poluvremenu, ali gost pobeđuje
41
+ na kraju.
42
+ - Sistem 'Srećni 31' uključuje pet događaja i ukupno 31 pojedinačnu opkladu koja
43
+ obuhvata singl, dubl, trostruke, četvorostruke i petostruke opklade.
44
+ - source_sentence: Kako koristiti informacije za klađenje?
45
+ sentences:
46
+ - Informacije su ključne za uspešno klađenje. Preporučuje se korišćenje službenih
47
+ sportskih stranica, portala i aplikacija za vesti kako biste dobili najnovije
48
+ podatke o utakmicama i igračima.
49
+ - Koeficijenti, ili kvote, označavaju verovatnoću ishoda događaja i određuju potencijalni
50
+ dobitak na osnovu uloženog novca.
51
+ - Hendikep klađenje podrazumeva da slabiji tim dobija prednost u bodovima pre početka
52
+ meča, čime se izjednačavaju šanse za pobedu.
53
+ - source_sentence: Šta je klađenje na kartone?
54
+ sentences:
55
+ - Ravnomerno klađenje podrazumeva postavljanje istog uloga na svaki događaj kako
56
+ bi se smanjio rizik.
57
+ - Klađenje na broj kornera podrazumeva predviđanje koliko će kornera biti izvedeno
58
+ tokom meča, sa kvotama koje se menjaju uživo.
59
+ - Klađenje na kartone uključuje predviđanje broja žutih ili crvenih kartona na utakmici,
60
+ postavljajući granicu pre početka utakmice.
61
+ model-index:
62
+ - name: SentenceTransformer based on djovak/embedic-large
63
+ results:
64
+ - task:
65
+ type: triplet
66
+ name: Triplet
67
+ dataset:
68
+ name: Unknown
69
+ type: unknown
70
+ metrics:
71
+ - type: cosine_accuracy
72
+ value: 1.0
73
+ name: Cosine Accuracy
74
+ - type: dot_accuracy
75
+ value: 0.0
76
+ name: Dot Accuracy
77
+ - type: manhattan_accuracy
78
+ value: 1.0
79
+ name: Manhattan Accuracy
80
+ - type: euclidean_accuracy
81
+ value: 1.0
82
+ name: Euclidean Accuracy
83
+ - type: max_accuracy
84
+ value: 1.0
85
+ name: Max Accuracy
86
+ ---
87
+
88
+ # SentenceTransformer based on djovak/embedic-large
89
+
90
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [djovak/embedic-large](https://huggingface.co/djovak/embedic-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
91
+
92
+ ## Model Details
93
+
94
+ ### Model Description
95
+ - **Model Type:** Sentence Transformer
96
+ - **Base model:** [djovak/embedic-large](https://huggingface.co/djovak/embedic-large) <!-- at revision 4d275ee32c11e1e2a1de8dc59493551c8e2bc4c8 -->
97
+ - **Maximum Sequence Length:** 512 tokens
98
+ - **Output Dimensionality:** 1024 tokens
99
+ - **Similarity Function:** Cosine Similarity
100
+ <!-- - **Training Dataset:** Unknown -->
101
+ <!-- - **Language:** Unknown -->
102
+ <!-- - **License:** Unknown -->
103
+
104
+ ### Model Sources
105
+
106
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
107
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
108
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
109
+
110
+ ### Full Model Architecture
111
+
112
+ ```
113
+ SentenceTransformer(
114
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
115
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
116
+ (2): Normalize()
117
+ )
118
+ ```
119
+
120
+ ## Usage
121
+
122
+ ### Direct Usage (Sentence Transformers)
123
+
124
+ First install the Sentence Transformers library:
125
+
126
+ ```bash
127
+ pip install -U sentence-transformers
128
+ ```
129
+
130
+ Then you can load this model and run inference.
131
+ ```python
132
+ from sentence_transformers import SentenceTransformer
133
+
134
+ # Download from the 🤗 Hub
135
+ model = SentenceTransformer("sentence_transformers_model_id")
136
+ # Run inference
137
+ sentences = [
138
+ 'Šta je klađenje na kartone?',
139
+ 'Klađenje na kartone uključuje predviđanje broja žutih ili crvenih kartona na utakmici, postavljajući granicu pre početka utakmice.',
140
+ 'Ravnomerno klađenje podrazumeva postavljanje istog uloga na svaki događaj kako bi se smanjio rizik.',
141
+ ]
142
+ embeddings = model.encode(sentences)
143
+ print(embeddings.shape)
144
+ # [3, 1024]
145
+
146
+ # Get the similarity scores for the embeddings
147
+ similarities = model.similarity(embeddings, embeddings)
148
+ print(similarities.shape)
149
+ # [3, 3]
150
+ ```
151
+
152
+ <!--
153
+ ### Direct Usage (Transformers)
154
+
155
+ <details><summary>Click to see the direct usage in Transformers</summary>
156
+
157
+ </details>
158
+ -->
159
+
160
+ <!--
161
+ ### Downstream Usage (Sentence Transformers)
162
+
163
+ You can finetune this model on your own dataset.
164
+
165
+ <details><summary>Click to expand</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Out-of-Scope Use
172
+
173
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
174
+ -->
175
+
176
+ ## Evaluation
177
+
178
+ ### Metrics
179
+
180
+ #### Triplet
181
+
182
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
183
+
184
+ | Metric | Value |
185
+ |:-------------------|:--------|
186
+ | cosine_accuracy | 1.0 |
187
+ | dot_accuracy | 0.0 |
188
+ | manhattan_accuracy | 1.0 |
189
+ | euclidean_accuracy | 1.0 |
190
+ | **max_accuracy** | **1.0** |
191
+
192
+ <!--
193
+ ## Bias, Risks and Limitations
194
+
195
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
196
+ -->
197
+
198
+ <!--
199
+ ### Recommendations
200
+
201
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
202
+ -->
203
+
204
+ ## Training Details
205
+
206
+ ### Training Dataset
207
+
208
+ #### Unnamed Dataset
209
+
210
+
211
+ * Size: 176 training samples
212
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
213
+ * Approximate statistics based on the first 176 samples:
214
+ | | anchor | positive | negative |
215
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
216
+ | type | string | string | string |
217
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.9 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 33.32 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 33.6 tokens</li><li>max: 54 tokens</li></ul> |
218
+ * Samples:
219
+ | anchor | positive | negative |
220
+ |:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
221
+ | <code>Kako funkcioniše klađenje uživo na tenis?</code> | <code>Klađenje uživo na tenis omogućava predviđanje ishoda poena, gemova i setova tokom meča, sa stalnim promenama kvota u zavisnosti od igre.</code> | <code>Trixie sistem klađenja uključuje četiri opklade na tri različita događaja: tri dubl opklade i jednu trostruku opkladu. Dovoljna su dva pogođena događaja da bi se ostvario dobitak.</code> |
222
+ | <code>Šta je klađenje na produžetke?</code> | <code>Klađenje na produžetke uključuje opklade na ishod utakmice u dodatnim periodima igre, nakon regularnog vremena.</code> | <code>Najpopularnije lige za klađenje na hokej uključuju NHL, Kontinentalnu ligu (KHL) i švedsku hokejašku ligu.</code> |
223
+ | <code>Kako pandemija COVID-19 utiče na otkazivanje utakmica?</code> | <code>Pandemija COVID-19 je dovela do povećanja broja otkazanih utakmica zbog zdravstvenih protokola i izolacija igrača.</code> | <code>Hendikep dodaje golove slabijem timu kako bi se izjednačile šanse za oba tima.</code> |
224
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
225
+ ```json
226
+ {
227
+ "scale": 20.0,
228
+ "similarity_fct": "cos_sim"
229
+ }
230
+ ```
231
+
232
+ ### Evaluation Dataset
233
+
234
+ #### Unnamed Dataset
235
+
236
+
237
+ * Size: 45 evaluation samples
238
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
239
+ * Approximate statistics based on the first 45 samples:
240
+ | | anchor | positive | negative |
241
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
242
+ | type | string | string | string |
243
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.89 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 35.67 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 32.58 tokens</li><li>max: 54 tokens</li></ul> |
244
+ * Samples:
245
+ | anchor | positive | negative |
246
+ |:------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
247
+ | <code>Kako DNB funkcioniše u klađenju uživo?</code> | <code>U klađenju uživo, DNB postaje profitabilan kada autsajder postigne gol prvi, povećavajući kvote za favorita.</code> | <code>Klađenje na kornere omogućava predviđanje broja kornera na utakmici. Igrač se kladi da li će broj kornera biti iznad ili ispod postavljene granice.</code> |
248
+ | <code>Šta se dešava sa opkladama u slučaju promenjenog mesta događaja?</code> | <code>Ako se promeni mesto održavanja utakmice, opklade postaju nevažeće, a kvota se računa kao 1.00.</code> | <code>Ako se utakmica pomeri za više od 48 sati, kladionica proglašava događaj nevažećim i kvota postaje 1.00.</code> |
249
+ | <code>Šta je azijski hendikep?</code> | <code>Azijski hendikep daje jednom timu prednost pre početka utakmice, a opklada se deli na dve odvojene opklade kako bi se izjednačile šanse za pobedu.</code> | <code>Najčešći tipovi klađenja uključuju konačan ishod, hendikep, ukupan broj poena, i klađenje na performanse pojedinih igrača.</code> |
250
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
251
+ ```json
252
+ {
253
+ "scale": 20.0,
254
+ "similarity_fct": "cos_sim"
255
+ }
256
+ ```
257
+
258
+ ### Training Hyperparameters
259
+ #### Non-Default Hyperparameters
260
+
261
+ - `eval_strategy`: epoch
262
+ - `per_device_eval_batch_size`: 16
263
+ - `gradient_accumulation_steps`: 4
264
+ - `learning_rate`: 1e-05
265
+ - `weight_decay`: 0.01
266
+ - `max_grad_norm`: 0.5
267
+ - `num_train_epochs`: 10
268
+ - `lr_scheduler_type`: cosine
269
+ - `warmup_ratio`: 0.2
270
+ - `fp16`: True
271
+ - `load_best_model_at_end`: True
272
+ - `ddp_find_unused_parameters`: False
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: epoch
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 8
282
+ - `per_device_eval_batch_size`: 16
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 4
286
+ - `eval_accumulation_steps`: None
287
+ - `torch_empty_cache_steps`: None
288
+ - `learning_rate`: 1e-05
289
+ - `weight_decay`: 0.01
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 0.5
294
+ - `num_train_epochs`: 10
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: cosine
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.2
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: True
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: True
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `fsdp_transformer_layer_cls_to_wrap`: None
340
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
341
+ - `deepspeed`: None
342
+ - `label_smoothing_factor`: 0.0
343
+ - `optim`: adamw_torch
344
+ - `optim_args`: None
345
+ - `adafactor`: False
346
+ - `group_by_length`: False
347
+ - `length_column_name`: length
348
+ - `ddp_find_unused_parameters`: False
349
+ - `ddp_bucket_cap_mb`: None
350
+ - `ddp_broadcast_buffers`: False
351
+ - `dataloader_pin_memory`: True
352
+ - `dataloader_persistent_workers`: False
353
+ - `skip_memory_metrics`: True
354
+ - `use_legacy_prediction_loop`: False
355
+ - `push_to_hub`: False
356
+ - `resume_from_checkpoint`: None
357
+ - `hub_model_id`: None
358
+ - `hub_strategy`: every_save
359
+ - `hub_private_repo`: False
360
+ - `hub_always_push`: False
361
+ - `gradient_checkpointing`: False
362
+ - `gradient_checkpointing_kwargs`: None
363
+ - `include_inputs_for_metrics`: False
364
+ - `eval_do_concat_batches`: True
365
+ - `fp16_backend`: auto
366
+ - `push_to_hub_model_id`: None
367
+ - `push_to_hub_organization`: None
368
+ - `mp_parameters`:
369
+ - `auto_find_batch_size`: False
370
+ - `full_determinism`: False
371
+ - `torchdynamo`: None
372
+ - `ray_scope`: last
373
+ - `ddp_timeout`: 1800
374
+ - `torch_compile`: False
375
+ - `torch_compile_backend`: None
376
+ - `torch_compile_mode`: None
377
+ - `dispatch_batches`: None
378
+ - `split_batches`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `use_liger_kernel`: False
386
+ - `eval_use_gather_object`: False
387
+ - `batch_sampler`: batch_sampler
388
+ - `multi_dataset_batch_sampler`: proportional
389
+
390
+ </details>
391
+
392
+ ### Training Logs
393
+ | Epoch | Step | Training Loss | loss | max_accuracy |
394
+ |:------:|:----:|:-------------:|:------:|:------------:|
395
+ | 0.9091 | 5 | - | 0.7353 | 1.0 |
396
+ | 1.8182 | 10 | 0.4569 | - | - |
397
+ | 2.0 | 11 | - | 0.2711 | 1.0 |
398
+ | 2.9091 | 16 | - | 0.1681 | 1.0 |
399
+ | 3.6364 | 20 | 0.1037 | - | - |
400
+ | 4.0 | 22 | - | 0.1329 | 1.0 |
401
+ | 4.9091 | 27 | - | 0.1265 | 1.0 |
402
+ | 5.4545 | 30 | 0.0643 | - | - |
403
+ | 6.0 | 33 | - | 0.1245 | 1.0 |
404
+
405
+
406
+ ### Framework Versions
407
+ - Python: 3.10.14
408
+ - Sentence Transformers: 3.1.1
409
+ - Transformers: 4.45.0
410
+ - PyTorch: 2.3.0
411
+ - Accelerate: 0.34.1
412
+ - Datasets: 2.19.1
413
+ - Tokenizers: 0.20.0
414
+
415
+ ## Citation
416
+
417
+ ### BibTeX
418
+
419
+ #### Sentence Transformers
420
+ ```bibtex
421
+ @inproceedings{reimers-2019-sentence-bert,
422
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
423
+ author = "Reimers, Nils and Gurevych, Iryna",
424
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
425
+ month = "11",
426
+ year = "2019",
427
+ publisher = "Association for Computational Linguistics",
428
+ url = "https://arxiv.org/abs/1908.10084",
429
+ }
430
+ ```
431
+
432
+ #### MultipleNegativesRankingLoss
433
+ ```bibtex
434
+ @misc{henderson2017efficient,
435
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
436
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
437
+ year={2017},
438
+ eprint={1705.00652},
439
+ archivePrefix={arXiv},
440
+ primaryClass={cs.CL}
441
+ }
442
+ ```
443
+
444
+ <!--
445
+ ## Glossary
446
+
447
+ *Clearly define terms in order to be accessible across audiences.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Authors
452
+
453
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
454
+ -->
455
+
456
+ <!--
457
+ ## Model Card Contact
458
+
459
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
460
+ -->
checkpoint-33/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "djovak/embedic-large",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.45.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoint-33/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.0",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-33/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adfa3c662d6af06d8e24845f5ee7ab6f3b57efc3c978d322d2d13da3e215a84f
3
+ size 2239607176
checkpoint-33/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-33/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:534a3cefca7a26a5cf3ec9d3b4936a12e21e5dfa7cedbd79e38c883123d1bcdf
3
+ size 4471044921
checkpoint-33/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc566a35845d6fe51ff230b5d3f1b0215c0787058eb36327f493e6c6ea2d696e
3
+ size 13990
checkpoint-33/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec5bd01514c0ed55d14d32113f513a6a0f1eb4d2c5ce558a43eb0831f821af9d
3
+ size 1064
checkpoint-33/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoint-33/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
checkpoint-33/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-33/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42fbf784ee16fec3bc557753a524df9e1c6959d0a13ff61366f6d0018341528d
3
+ size 17090510
checkpoint-33/tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }
checkpoint-33/trainer_state.json ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.12450794875621796,
3
+ "best_model_checkpoint": "autotrain-kladionica/checkpoint-33",
4
+ "epoch": 6.0,
5
+ "eval_steps": 500,
6
+ "global_step": 33,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9090909090909091,
13
+ "eval_cosine_accuracy": 1.0,
14
+ "eval_dot_accuracy": 0.0,
15
+ "eval_euclidean_accuracy": 1.0,
16
+ "eval_loss": 0.7352991104125977,
17
+ "eval_manhattan_accuracy": 1.0,
18
+ "eval_max_accuracy": 1.0,
19
+ "eval_runtime": 59.5349,
20
+ "eval_samples_per_second": 0.756,
21
+ "eval_steps_per_second": 0.05,
22
+ "step": 5
23
+ },
24
+ {
25
+ "epoch": 1.8181818181818183,
26
+ "grad_norm": 4.690580368041992,
27
+ "learning_rate": 1e-05,
28
+ "loss": 0.4569,
29
+ "step": 10
30
+ },
31
+ {
32
+ "epoch": 2.0,
33
+ "eval_cosine_accuracy": 1.0,
34
+ "eval_dot_accuracy": 0.0,
35
+ "eval_euclidean_accuracy": 1.0,
36
+ "eval_loss": 0.271090030670166,
37
+ "eval_manhattan_accuracy": 1.0,
38
+ "eval_max_accuracy": 1.0,
39
+ "eval_runtime": 58.202,
40
+ "eval_samples_per_second": 0.773,
41
+ "eval_steps_per_second": 0.052,
42
+ "step": 11
43
+ },
44
+ {
45
+ "epoch": 2.909090909090909,
46
+ "eval_cosine_accuracy": 1.0,
47
+ "eval_dot_accuracy": 0.0,
48
+ "eval_euclidean_accuracy": 1.0,
49
+ "eval_loss": 0.16810357570648193,
50
+ "eval_manhattan_accuracy": 1.0,
51
+ "eval_max_accuracy": 1.0,
52
+ "eval_runtime": 64.351,
53
+ "eval_samples_per_second": 0.699,
54
+ "eval_steps_per_second": 0.047,
55
+ "step": 16
56
+ },
57
+ {
58
+ "epoch": 3.6363636363636362,
59
+ "grad_norm": 1.5101182460784912,
60
+ "learning_rate": 8.535533905932739e-06,
61
+ "loss": 0.1037,
62
+ "step": 20
63
+ },
64
+ {
65
+ "epoch": 4.0,
66
+ "eval_cosine_accuracy": 1.0,
67
+ "eval_dot_accuracy": 0.0,
68
+ "eval_euclidean_accuracy": 1.0,
69
+ "eval_loss": 0.132945716381073,
70
+ "eval_manhattan_accuracy": 1.0,
71
+ "eval_max_accuracy": 1.0,
72
+ "eval_runtime": 57.7743,
73
+ "eval_samples_per_second": 0.779,
74
+ "eval_steps_per_second": 0.052,
75
+ "step": 22
76
+ },
77
+ {
78
+ "epoch": 4.909090909090909,
79
+ "eval_cosine_accuracy": 1.0,
80
+ "eval_dot_accuracy": 0.0,
81
+ "eval_euclidean_accuracy": 1.0,
82
+ "eval_loss": 0.1265309602022171,
83
+ "eval_manhattan_accuracy": 1.0,
84
+ "eval_max_accuracy": 1.0,
85
+ "eval_runtime": 57.1986,
86
+ "eval_samples_per_second": 0.787,
87
+ "eval_steps_per_second": 0.052,
88
+ "step": 27
89
+ },
90
+ {
91
+ "epoch": 5.454545454545454,
92
+ "grad_norm": 3.2575457096099854,
93
+ "learning_rate": 5e-06,
94
+ "loss": 0.0643,
95
+ "step": 30
96
+ },
97
+ {
98
+ "epoch": 6.0,
99
+ "eval_cosine_accuracy": 1.0,
100
+ "eval_dot_accuracy": 0.0,
101
+ "eval_euclidean_accuracy": 1.0,
102
+ "eval_loss": 0.12450794875621796,
103
+ "eval_manhattan_accuracy": 1.0,
104
+ "eval_max_accuracy": 1.0,
105
+ "eval_runtime": 57.4285,
106
+ "eval_samples_per_second": 0.784,
107
+ "eval_steps_per_second": 0.052,
108
+ "step": 33
109
+ }
110
+ ],
111
+ "logging_steps": 10,
112
+ "max_steps": 50,
113
+ "num_input_tokens_seen": 0,
114
+ "num_train_epochs": 10,
115
+ "save_steps": 500,
116
+ "stateful_callbacks": {
117
+ "EarlyStoppingCallback": {
118
+ "args": {
119
+ "early_stopping_patience": 5,
120
+ "early_stopping_threshold": 0.01
121
+ },
122
+ "attributes": {
123
+ "early_stopping_patience_counter": 2
124
+ }
125
+ },
126
+ "TrainerControl": {
127
+ "args": {
128
+ "should_epoch_stop": false,
129
+ "should_evaluate": false,
130
+ "should_log": false,
131
+ "should_save": true,
132
+ "should_training_stop": false
133
+ },
134
+ "attributes": {}
135
+ }
136
+ },
137
+ "total_flos": 0.0,
138
+ "train_batch_size": 8,
139
+ "trial_name": null,
140
+ "trial_params": null
141
+ }
checkpoint-33/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5bd0b93b2bc206736e76a939a0672af14c80c5cf01af4b31cad5f6bd79f857c
3
+ size 5496
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "djovak/embedic-large",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.45.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.0",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adfa3c662d6af06d8e24845f5ee7ab6f3b57efc3c978d322d2d13da3e215a84f
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727769674.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:26d7235f312648e33ec9d9e6089e812db60f4fda97c0e1f1f614cd6690b802ba
3
- size 9614
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5816e9e2cbeea5b67e21ebf44da2b71f4740eb76e68aa884cefb7aef360810a3
3
+ size 10518
runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727774367.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:212078f807d6155452aa11c4d16d947f46063f2456e0a55740b443eb3b4df201
3
+ size 644
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42fbf784ee16fec3bc557753a524df9e1c6959d0a13ff61366f6d0018341528d
3
+ size 17090510
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5bd0b93b2bc206736e76a939a0672af14c80c5cf01af4b31cad5f6bd79f857c
3
+ size 5496
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-kladionica/autotrain-data",
3
+ "model": "djovak/embedic-large",
4
+ "lr": 1e-05,
5
+ "epochs": 10,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.2,
9
+ "gradient_accumulation": 4,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "cosine",
12
+ "weight_decay": 0.01,
13
+ "max_grad_norm": 0.5,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": 10,
18
+ "project_name": "autotrain-kladionica",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "luka023",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "triplet",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }