Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +72 -0
- checkpoint-33/1_Pooling/config.json +10 -0
- checkpoint-33/README.md +460 -0
- checkpoint-33/config.json +28 -0
- checkpoint-33/config_sentence_transformers.json +10 -0
- checkpoint-33/model.safetensors +3 -0
- checkpoint-33/modules.json +20 -0
- checkpoint-33/optimizer.pt +3 -0
- checkpoint-33/rng_state.pth +3 -0
- checkpoint-33/scheduler.pt +3 -0
- checkpoint-33/sentence_bert_config.json +4 -0
- checkpoint-33/sentencepiece.bpe.model +3 -0
- checkpoint-33/special_tokens_map.json +51 -0
- checkpoint-33/tokenizer.json +3 -0
- checkpoint-33/tokenizer_config.json +61 -0
- checkpoint-33/trainer_state.json +141 -0
- checkpoint-33/training_args.bin +3 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727769674.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.0 +2 -2
- runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727774367.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.1 +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
- training_args.bin +3 -0
- training_params.json +33 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-33/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- autotrain
|
9 |
+
base_model: djovak/embedic-large
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'search_query: i love autotrain'
|
12 |
+
sentences:
|
13 |
+
- 'search_query: huggingface auto train'
|
14 |
+
- 'search_query: hugging face auto train'
|
15 |
+
- 'search_query: i love autotrain'
|
16 |
+
pipeline_tag: sentence-similarity
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model Trained Using AutoTrain
|
20 |
+
|
21 |
+
- Problem type: Sentence Transformers
|
22 |
+
|
23 |
+
## Validation Metrics
|
24 |
+
loss: 0.12450794875621796
|
25 |
+
|
26 |
+
cosine_accuracy: 1.0
|
27 |
+
|
28 |
+
dot_accuracy: 0.0
|
29 |
+
|
30 |
+
manhattan_accuracy: 1.0
|
31 |
+
|
32 |
+
euclidean_accuracy: 1.0
|
33 |
+
|
34 |
+
max_accuracy: 1.0
|
35 |
+
|
36 |
+
runtime: 58.713
|
37 |
+
|
38 |
+
samples_per_second: 0.766
|
39 |
+
|
40 |
+
steps_per_second: 0.051
|
41 |
+
|
42 |
+
: 8.909090909090908
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
### Direct Usage (Sentence Transformers)
|
47 |
+
|
48 |
+
First install the Sentence Transformers library:
|
49 |
+
|
50 |
+
```bash
|
51 |
+
pip install -U sentence-transformers
|
52 |
+
```
|
53 |
+
|
54 |
+
Then you can load this model and run inference.
|
55 |
+
```python
|
56 |
+
from sentence_transformers import SentenceTransformer
|
57 |
+
|
58 |
+
# Download from the Hugging Face Hub
|
59 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
60 |
+
# Run inference
|
61 |
+
sentences = [
|
62 |
+
'search_query: autotrain',
|
63 |
+
'search_query: auto train',
|
64 |
+
'search_query: i love autotrain',
|
65 |
+
]
|
66 |
+
embeddings = model.encode(sentences)
|
67 |
+
print(embeddings.shape)
|
68 |
+
|
69 |
+
# Get the similarity scores for the embeddings
|
70 |
+
similarities = model.similarity(embeddings, embeddings)
|
71 |
+
print(similarities.shape)
|
72 |
+
```
|
checkpoint-33/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-33/README.md
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: djovak/embedic-large
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy
|
6 |
+
- dot_accuracy
|
7 |
+
- manhattan_accuracy
|
8 |
+
- euclidean_accuracy
|
9 |
+
- max_accuracy
|
10 |
+
pipeline_tag: sentence-similarity
|
11 |
+
tags:
|
12 |
+
- sentence-transformers
|
13 |
+
- sentence-similarity
|
14 |
+
- feature-extraction
|
15 |
+
- generated_from_trainer
|
16 |
+
- dataset_size:176
|
17 |
+
- loss:MultipleNegativesRankingLoss
|
18 |
+
widget:
|
19 |
+
- source_sentence: Kako Meridian kladionica tretira odlaganja?
|
20 |
+
sentences:
|
21 |
+
- Klađenje na dubl se razlikuje od singla, gde timska hemija i tehnika igrača poput
|
22 |
+
voleja i servisa igraju ključnu ulogu.
|
23 |
+
- Važno je pratiti formu igrača, promene u servisu i povrede kako biste doneli informisane
|
24 |
+
odluke u klađenju uživo na tenis.
|
25 |
+
- Meridian kladionica računa kvotu 1.00 ako se utakmica ne odigra u roku od sledećeg
|
26 |
+
dana od planiranog termina.
|
27 |
+
- source_sentence: Šta je hajnc sistem klađenja?
|
28 |
+
sentences:
|
29 |
+
- Loši vremenski uslovi, kao što su kiša ili sneg, mogu otežati igru i smanjiti
|
30 |
+
broj golova.
|
31 |
+
- Hajnc je kombinovani sistem klađenja koji uključuje šest događaja i ukupno 57
|
32 |
+
pojedinačnih opklada.
|
33 |
+
- Za razliku od drugih sportova, vremenski uslovi ne utiču direktno na košarkaške
|
34 |
+
mečeve, ali povrede ili izostanci igrača mogu značajno promeniti ishod.
|
35 |
+
- source_sentence: Kako funkcioniše klađenje na poluvreme/kraj?
|
36 |
+
sentences:
|
37 |
+
- Ako se utakmica odloži za više od 48 sati, kvota postaje 1.00 i ulog se vraća,
|
38 |
+
osim ako su ostali parovi na tiketu.
|
39 |
+
- Ova vrsta klađenja zahteva predviđanje ishoda i na poluvremenu i na kraju utakmice.
|
40 |
+
Na primer, opklada 1-2 znači da domaćin vodi na poluvremenu, ali gost pobeđuje
|
41 |
+
na kraju.
|
42 |
+
- Sistem 'Srećni 31' uključuje pet događaja i ukupno 31 pojedinačnu opkladu koja
|
43 |
+
obuhvata singl, dubl, trostruke, četvorostruke i petostruke opklade.
|
44 |
+
- source_sentence: Kako koristiti informacije za klađenje?
|
45 |
+
sentences:
|
46 |
+
- Informacije su ključne za uspešno klađenje. Preporučuje se korišćenje službenih
|
47 |
+
sportskih stranica, portala i aplikacija za vesti kako biste dobili najnovije
|
48 |
+
podatke o utakmicama i igračima.
|
49 |
+
- Koeficijenti, ili kvote, označavaju verovatnoću ishoda događaja i određuju potencijalni
|
50 |
+
dobitak na osnovu uloženog novca.
|
51 |
+
- Hendikep klađenje podrazumeva da slabiji tim dobija prednost u bodovima pre početka
|
52 |
+
meča, čime se izjednačavaju šanse za pobedu.
|
53 |
+
- source_sentence: Šta je klađenje na kartone?
|
54 |
+
sentences:
|
55 |
+
- Ravnomerno klađenje podrazumeva postavljanje istog uloga na svaki događaj kako
|
56 |
+
bi se smanjio rizik.
|
57 |
+
- Klađenje na broj kornera podrazumeva predviđanje koliko će kornera biti izvedeno
|
58 |
+
tokom meča, sa kvotama koje se menjaju uživo.
|
59 |
+
- Klađenje na kartone uključuje predviđanje broja žutih ili crvenih kartona na utakmici,
|
60 |
+
postavljajući granicu pre početka utakmice.
|
61 |
+
model-index:
|
62 |
+
- name: SentenceTransformer based on djovak/embedic-large
|
63 |
+
results:
|
64 |
+
- task:
|
65 |
+
type: triplet
|
66 |
+
name: Triplet
|
67 |
+
dataset:
|
68 |
+
name: Unknown
|
69 |
+
type: unknown
|
70 |
+
metrics:
|
71 |
+
- type: cosine_accuracy
|
72 |
+
value: 1.0
|
73 |
+
name: Cosine Accuracy
|
74 |
+
- type: dot_accuracy
|
75 |
+
value: 0.0
|
76 |
+
name: Dot Accuracy
|
77 |
+
- type: manhattan_accuracy
|
78 |
+
value: 1.0
|
79 |
+
name: Manhattan Accuracy
|
80 |
+
- type: euclidean_accuracy
|
81 |
+
value: 1.0
|
82 |
+
name: Euclidean Accuracy
|
83 |
+
- type: max_accuracy
|
84 |
+
value: 1.0
|
85 |
+
name: Max Accuracy
|
86 |
+
---
|
87 |
+
|
88 |
+
# SentenceTransformer based on djovak/embedic-large
|
89 |
+
|
90 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [djovak/embedic-large](https://huggingface.co/djovak/embedic-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
91 |
+
|
92 |
+
## Model Details
|
93 |
+
|
94 |
+
### Model Description
|
95 |
+
- **Model Type:** Sentence Transformer
|
96 |
+
- **Base model:** [djovak/embedic-large](https://huggingface.co/djovak/embedic-large) <!-- at revision 4d275ee32c11e1e2a1de8dc59493551c8e2bc4c8 -->
|
97 |
+
- **Maximum Sequence Length:** 512 tokens
|
98 |
+
- **Output Dimensionality:** 1024 tokens
|
99 |
+
- **Similarity Function:** Cosine Similarity
|
100 |
+
<!-- - **Training Dataset:** Unknown -->
|
101 |
+
<!-- - **Language:** Unknown -->
|
102 |
+
<!-- - **License:** Unknown -->
|
103 |
+
|
104 |
+
### Model Sources
|
105 |
+
|
106 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
107 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
108 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
109 |
+
|
110 |
+
### Full Model Architecture
|
111 |
+
|
112 |
+
```
|
113 |
+
SentenceTransformer(
|
114 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
115 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
116 |
+
(2): Normalize()
|
117 |
+
)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Usage
|
121 |
+
|
122 |
+
### Direct Usage (Sentence Transformers)
|
123 |
+
|
124 |
+
First install the Sentence Transformers library:
|
125 |
+
|
126 |
+
```bash
|
127 |
+
pip install -U sentence-transformers
|
128 |
+
```
|
129 |
+
|
130 |
+
Then you can load this model and run inference.
|
131 |
+
```python
|
132 |
+
from sentence_transformers import SentenceTransformer
|
133 |
+
|
134 |
+
# Download from the 🤗 Hub
|
135 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
136 |
+
# Run inference
|
137 |
+
sentences = [
|
138 |
+
'Šta je klađenje na kartone?',
|
139 |
+
'Klađenje na kartone uključuje predviđanje broja žutih ili crvenih kartona na utakmici, postavljajući granicu pre početka utakmice.',
|
140 |
+
'Ravnomerno klađenje podrazumeva postavljanje istog uloga na svaki događaj kako bi se smanjio rizik.',
|
141 |
+
]
|
142 |
+
embeddings = model.encode(sentences)
|
143 |
+
print(embeddings.shape)
|
144 |
+
# [3, 1024]
|
145 |
+
|
146 |
+
# Get the similarity scores for the embeddings
|
147 |
+
similarities = model.similarity(embeddings, embeddings)
|
148 |
+
print(similarities.shape)
|
149 |
+
# [3, 3]
|
150 |
+
```
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Direct Usage (Transformers)
|
154 |
+
|
155 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
156 |
+
|
157 |
+
</details>
|
158 |
+
-->
|
159 |
+
|
160 |
+
<!--
|
161 |
+
### Downstream Usage (Sentence Transformers)
|
162 |
+
|
163 |
+
You can finetune this model on your own dataset.
|
164 |
+
|
165 |
+
<details><summary>Click to expand</summary>
|
166 |
+
|
167 |
+
</details>
|
168 |
+
-->
|
169 |
+
|
170 |
+
<!--
|
171 |
+
### Out-of-Scope Use
|
172 |
+
|
173 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
174 |
+
-->
|
175 |
+
|
176 |
+
## Evaluation
|
177 |
+
|
178 |
+
### Metrics
|
179 |
+
|
180 |
+
#### Triplet
|
181 |
+
|
182 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
183 |
+
|
184 |
+
| Metric | Value |
|
185 |
+
|:-------------------|:--------|
|
186 |
+
| cosine_accuracy | 1.0 |
|
187 |
+
| dot_accuracy | 0.0 |
|
188 |
+
| manhattan_accuracy | 1.0 |
|
189 |
+
| euclidean_accuracy | 1.0 |
|
190 |
+
| **max_accuracy** | **1.0** |
|
191 |
+
|
192 |
+
<!--
|
193 |
+
## Bias, Risks and Limitations
|
194 |
+
|
195 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
196 |
+
-->
|
197 |
+
|
198 |
+
<!--
|
199 |
+
### Recommendations
|
200 |
+
|
201 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
202 |
+
-->
|
203 |
+
|
204 |
+
## Training Details
|
205 |
+
|
206 |
+
### Training Dataset
|
207 |
+
|
208 |
+
#### Unnamed Dataset
|
209 |
+
|
210 |
+
|
211 |
+
* Size: 176 training samples
|
212 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
213 |
+
* Approximate statistics based on the first 176 samples:
|
214 |
+
| | anchor | positive | negative |
|
215 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
216 |
+
| type | string | string | string |
|
217 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.9 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 33.32 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 33.6 tokens</li><li>max: 54 tokens</li></ul> |
|
218 |
+
* Samples:
|
219 |
+
| anchor | positive | negative |
|
220 |
+
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
221 |
+
| <code>Kako funkcioniše klađenje uživo na tenis?</code> | <code>Klađenje uživo na tenis omogućava predviđanje ishoda poena, gemova i setova tokom meča, sa stalnim promenama kvota u zavisnosti od igre.</code> | <code>Trixie sistem klađenja uključuje četiri opklade na tri različita događaja: tri dubl opklade i jednu trostruku opkladu. Dovoljna su dva pogođena događaja da bi se ostvario dobitak.</code> |
|
222 |
+
| <code>Šta je klađenje na produžetke?</code> | <code>Klađenje na produžetke uključuje opklade na ishod utakmice u dodatnim periodima igre, nakon regularnog vremena.</code> | <code>Najpopularnije lige za klađenje na hokej uključuju NHL, Kontinentalnu ligu (KHL) i švedsku hokejašku ligu.</code> |
|
223 |
+
| <code>Kako pandemija COVID-19 utiče na otkazivanje utakmica?</code> | <code>Pandemija COVID-19 je dovela do povećanja broja otkazanih utakmica zbog zdravstvenih protokola i izolacija igrača.</code> | <code>Hendikep dodaje golove slabijem timu kako bi se izjednačile šanse za oba tima.</code> |
|
224 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
225 |
+
```json
|
226 |
+
{
|
227 |
+
"scale": 20.0,
|
228 |
+
"similarity_fct": "cos_sim"
|
229 |
+
}
|
230 |
+
```
|
231 |
+
|
232 |
+
### Evaluation Dataset
|
233 |
+
|
234 |
+
#### Unnamed Dataset
|
235 |
+
|
236 |
+
|
237 |
+
* Size: 45 evaluation samples
|
238 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
239 |
+
* Approximate statistics based on the first 45 samples:
|
240 |
+
| | anchor | positive | negative |
|
241 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
242 |
+
| type | string | string | string |
|
243 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.89 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 35.67 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 32.58 tokens</li><li>max: 54 tokens</li></ul> |
|
244 |
+
* Samples:
|
245 |
+
| anchor | positive | negative |
|
246 |
+
|:------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
247 |
+
| <code>Kako DNB funkcioniše u klađenju uživo?</code> | <code>U klađenju uživo, DNB postaje profitabilan kada autsajder postigne gol prvi, povećavajući kvote za favorita.</code> | <code>Klađenje na kornere omogućava predviđanje broja kornera na utakmici. Igrač se kladi da li će broj kornera biti iznad ili ispod postavljene granice.</code> |
|
248 |
+
| <code>Šta se dešava sa opkladama u slučaju promenjenog mesta događaja?</code> | <code>Ako se promeni mesto održavanja utakmice, opklade postaju nevažeće, a kvota se računa kao 1.00.</code> | <code>Ako se utakmica pomeri za više od 48 sati, kladionica proglašava događaj nevažećim i kvota postaje 1.00.</code> |
|
249 |
+
| <code>Šta je azijski hendikep?</code> | <code>Azijski hendikep daje jednom timu prednost pre početka utakmice, a opklada se deli na dve odvojene opklade kako bi se izjednačile šanse za pobedu.</code> | <code>Najčešći tipovi klađenja uključuju konačan ishod, hendikep, ukupan broj poena, i klađenje na performanse pojedinih igrača.</code> |
|
250 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
251 |
+
```json
|
252 |
+
{
|
253 |
+
"scale": 20.0,
|
254 |
+
"similarity_fct": "cos_sim"
|
255 |
+
}
|
256 |
+
```
|
257 |
+
|
258 |
+
### Training Hyperparameters
|
259 |
+
#### Non-Default Hyperparameters
|
260 |
+
|
261 |
+
- `eval_strategy`: epoch
|
262 |
+
- `per_device_eval_batch_size`: 16
|
263 |
+
- `gradient_accumulation_steps`: 4
|
264 |
+
- `learning_rate`: 1e-05
|
265 |
+
- `weight_decay`: 0.01
|
266 |
+
- `max_grad_norm`: 0.5
|
267 |
+
- `num_train_epochs`: 10
|
268 |
+
- `lr_scheduler_type`: cosine
|
269 |
+
- `warmup_ratio`: 0.2
|
270 |
+
- `fp16`: True
|
271 |
+
- `load_best_model_at_end`: True
|
272 |
+
- `ddp_find_unused_parameters`: False
|
273 |
+
|
274 |
+
#### All Hyperparameters
|
275 |
+
<details><summary>Click to expand</summary>
|
276 |
+
|
277 |
+
- `overwrite_output_dir`: False
|
278 |
+
- `do_predict`: False
|
279 |
+
- `eval_strategy`: epoch
|
280 |
+
- `prediction_loss_only`: True
|
281 |
+
- `per_device_train_batch_size`: 8
|
282 |
+
- `per_device_eval_batch_size`: 16
|
283 |
+
- `per_gpu_train_batch_size`: None
|
284 |
+
- `per_gpu_eval_batch_size`: None
|
285 |
+
- `gradient_accumulation_steps`: 4
|
286 |
+
- `eval_accumulation_steps`: None
|
287 |
+
- `torch_empty_cache_steps`: None
|
288 |
+
- `learning_rate`: 1e-05
|
289 |
+
- `weight_decay`: 0.01
|
290 |
+
- `adam_beta1`: 0.9
|
291 |
+
- `adam_beta2`: 0.999
|
292 |
+
- `adam_epsilon`: 1e-08
|
293 |
+
- `max_grad_norm`: 0.5
|
294 |
+
- `num_train_epochs`: 10
|
295 |
+
- `max_steps`: -1
|
296 |
+
- `lr_scheduler_type`: cosine
|
297 |
+
- `lr_scheduler_kwargs`: {}
|
298 |
+
- `warmup_ratio`: 0.2
|
299 |
+
- `warmup_steps`: 0
|
300 |
+
- `log_level`: passive
|
301 |
+
- `log_level_replica`: warning
|
302 |
+
- `log_on_each_node`: True
|
303 |
+
- `logging_nan_inf_filter`: True
|
304 |
+
- `save_safetensors`: True
|
305 |
+
- `save_on_each_node`: False
|
306 |
+
- `save_only_model`: False
|
307 |
+
- `restore_callback_states_from_checkpoint`: False
|
308 |
+
- `no_cuda`: False
|
309 |
+
- `use_cpu`: False
|
310 |
+
- `use_mps_device`: False
|
311 |
+
- `seed`: 42
|
312 |
+
- `data_seed`: None
|
313 |
+
- `jit_mode_eval`: False
|
314 |
+
- `use_ipex`: False
|
315 |
+
- `bf16`: False
|
316 |
+
- `fp16`: True
|
317 |
+
- `fp16_opt_level`: O1
|
318 |
+
- `half_precision_backend`: auto
|
319 |
+
- `bf16_full_eval`: False
|
320 |
+
- `fp16_full_eval`: False
|
321 |
+
- `tf32`: None
|
322 |
+
- `local_rank`: 0
|
323 |
+
- `ddp_backend`: None
|
324 |
+
- `tpu_num_cores`: None
|
325 |
+
- `tpu_metrics_debug`: False
|
326 |
+
- `debug`: []
|
327 |
+
- `dataloader_drop_last`: False
|
328 |
+
- `dataloader_num_workers`: 0
|
329 |
+
- `dataloader_prefetch_factor`: None
|
330 |
+
- `past_index`: -1
|
331 |
+
- `disable_tqdm`: False
|
332 |
+
- `remove_unused_columns`: True
|
333 |
+
- `label_names`: None
|
334 |
+
- `load_best_model_at_end`: True
|
335 |
+
- `ignore_data_skip`: False
|
336 |
+
- `fsdp`: []
|
337 |
+
- `fsdp_min_num_params`: 0
|
338 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
339 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
340 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
341 |
+
- `deepspeed`: None
|
342 |
+
- `label_smoothing_factor`: 0.0
|
343 |
+
- `optim`: adamw_torch
|
344 |
+
- `optim_args`: None
|
345 |
+
- `adafactor`: False
|
346 |
+
- `group_by_length`: False
|
347 |
+
- `length_column_name`: length
|
348 |
+
- `ddp_find_unused_parameters`: False
|
349 |
+
- `ddp_bucket_cap_mb`: None
|
350 |
+
- `ddp_broadcast_buffers`: False
|
351 |
+
- `dataloader_pin_memory`: True
|
352 |
+
- `dataloader_persistent_workers`: False
|
353 |
+
- `skip_memory_metrics`: True
|
354 |
+
- `use_legacy_prediction_loop`: False
|
355 |
+
- `push_to_hub`: False
|
356 |
+
- `resume_from_checkpoint`: None
|
357 |
+
- `hub_model_id`: None
|
358 |
+
- `hub_strategy`: every_save
|
359 |
+
- `hub_private_repo`: False
|
360 |
+
- `hub_always_push`: False
|
361 |
+
- `gradient_checkpointing`: False
|
362 |
+
- `gradient_checkpointing_kwargs`: None
|
363 |
+
- `include_inputs_for_metrics`: False
|
364 |
+
- `eval_do_concat_batches`: True
|
365 |
+
- `fp16_backend`: auto
|
366 |
+
- `push_to_hub_model_id`: None
|
367 |
+
- `push_to_hub_organization`: None
|
368 |
+
- `mp_parameters`:
|
369 |
+
- `auto_find_batch_size`: False
|
370 |
+
- `full_determinism`: False
|
371 |
+
- `torchdynamo`: None
|
372 |
+
- `ray_scope`: last
|
373 |
+
- `ddp_timeout`: 1800
|
374 |
+
- `torch_compile`: False
|
375 |
+
- `torch_compile_backend`: None
|
376 |
+
- `torch_compile_mode`: None
|
377 |
+
- `dispatch_batches`: None
|
378 |
+
- `split_batches`: None
|
379 |
+
- `include_tokens_per_second`: False
|
380 |
+
- `include_num_input_tokens_seen`: False
|
381 |
+
- `neftune_noise_alpha`: None
|
382 |
+
- `optim_target_modules`: None
|
383 |
+
- `batch_eval_metrics`: False
|
384 |
+
- `eval_on_start`: False
|
385 |
+
- `use_liger_kernel`: False
|
386 |
+
- `eval_use_gather_object`: False
|
387 |
+
- `batch_sampler`: batch_sampler
|
388 |
+
- `multi_dataset_batch_sampler`: proportional
|
389 |
+
|
390 |
+
</details>
|
391 |
+
|
392 |
+
### Training Logs
|
393 |
+
| Epoch | Step | Training Loss | loss | max_accuracy |
|
394 |
+
|:------:|:----:|:-------------:|:------:|:------------:|
|
395 |
+
| 0.9091 | 5 | - | 0.7353 | 1.0 |
|
396 |
+
| 1.8182 | 10 | 0.4569 | - | - |
|
397 |
+
| 2.0 | 11 | - | 0.2711 | 1.0 |
|
398 |
+
| 2.9091 | 16 | - | 0.1681 | 1.0 |
|
399 |
+
| 3.6364 | 20 | 0.1037 | - | - |
|
400 |
+
| 4.0 | 22 | - | 0.1329 | 1.0 |
|
401 |
+
| 4.9091 | 27 | - | 0.1265 | 1.0 |
|
402 |
+
| 5.4545 | 30 | 0.0643 | - | - |
|
403 |
+
| 6.0 | 33 | - | 0.1245 | 1.0 |
|
404 |
+
|
405 |
+
|
406 |
+
### Framework Versions
|
407 |
+
- Python: 3.10.14
|
408 |
+
- Sentence Transformers: 3.1.1
|
409 |
+
- Transformers: 4.45.0
|
410 |
+
- PyTorch: 2.3.0
|
411 |
+
- Accelerate: 0.34.1
|
412 |
+
- Datasets: 2.19.1
|
413 |
+
- Tokenizers: 0.20.0
|
414 |
+
|
415 |
+
## Citation
|
416 |
+
|
417 |
+
### BibTeX
|
418 |
+
|
419 |
+
#### Sentence Transformers
|
420 |
+
```bibtex
|
421 |
+
@inproceedings{reimers-2019-sentence-bert,
|
422 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
423 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
424 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
425 |
+
month = "11",
|
426 |
+
year = "2019",
|
427 |
+
publisher = "Association for Computational Linguistics",
|
428 |
+
url = "https://arxiv.org/abs/1908.10084",
|
429 |
+
}
|
430 |
+
```
|
431 |
+
|
432 |
+
#### MultipleNegativesRankingLoss
|
433 |
+
```bibtex
|
434 |
+
@misc{henderson2017efficient,
|
435 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
436 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
437 |
+
year={2017},
|
438 |
+
eprint={1705.00652},
|
439 |
+
archivePrefix={arXiv},
|
440 |
+
primaryClass={cs.CL}
|
441 |
+
}
|
442 |
+
```
|
443 |
+
|
444 |
+
<!--
|
445 |
+
## Glossary
|
446 |
+
|
447 |
+
*Clearly define terms in order to be accessible across audiences.*
|
448 |
+
-->
|
449 |
+
|
450 |
+
<!--
|
451 |
+
## Model Card Authors
|
452 |
+
|
453 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
454 |
+
-->
|
455 |
+
|
456 |
+
<!--
|
457 |
+
## Model Card Contact
|
458 |
+
|
459 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
460 |
+
-->
|
checkpoint-33/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "djovak/embedic-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.45.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-33/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.0",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-33/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adfa3c662d6af06d8e24845f5ee7ab6f3b57efc3c978d322d2d13da3e215a84f
|
3 |
+
size 2239607176
|
checkpoint-33/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoint-33/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:534a3cefca7a26a5cf3ec9d3b4936a12e21e5dfa7cedbd79e38c883123d1bcdf
|
3 |
+
size 4471044921
|
checkpoint-33/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc566a35845d6fe51ff230b5d3f1b0215c0787058eb36327f493e6c6ea2d696e
|
3 |
+
size 13990
|
checkpoint-33/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec5bd01514c0ed55d14d32113f513a6a0f1eb4d2c5ce558a43eb0831f821af9d
|
3 |
+
size 1064
|
checkpoint-33/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-33/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-33/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoint-33/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42fbf784ee16fec3bc557753a524df9e1c6959d0a13ff61366f6d0018341528d
|
3 |
+
size 17090510
|
checkpoint-33/tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
checkpoint-33/trainer_state.json
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.12450794875621796,
|
3 |
+
"best_model_checkpoint": "autotrain-kladionica/checkpoint-33",
|
4 |
+
"epoch": 6.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 33,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.9090909090909091,
|
13 |
+
"eval_cosine_accuracy": 1.0,
|
14 |
+
"eval_dot_accuracy": 0.0,
|
15 |
+
"eval_euclidean_accuracy": 1.0,
|
16 |
+
"eval_loss": 0.7352991104125977,
|
17 |
+
"eval_manhattan_accuracy": 1.0,
|
18 |
+
"eval_max_accuracy": 1.0,
|
19 |
+
"eval_runtime": 59.5349,
|
20 |
+
"eval_samples_per_second": 0.756,
|
21 |
+
"eval_steps_per_second": 0.05,
|
22 |
+
"step": 5
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 1.8181818181818183,
|
26 |
+
"grad_norm": 4.690580368041992,
|
27 |
+
"learning_rate": 1e-05,
|
28 |
+
"loss": 0.4569,
|
29 |
+
"step": 10
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"eval_cosine_accuracy": 1.0,
|
34 |
+
"eval_dot_accuracy": 0.0,
|
35 |
+
"eval_euclidean_accuracy": 1.0,
|
36 |
+
"eval_loss": 0.271090030670166,
|
37 |
+
"eval_manhattan_accuracy": 1.0,
|
38 |
+
"eval_max_accuracy": 1.0,
|
39 |
+
"eval_runtime": 58.202,
|
40 |
+
"eval_samples_per_second": 0.773,
|
41 |
+
"eval_steps_per_second": 0.052,
|
42 |
+
"step": 11
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 2.909090909090909,
|
46 |
+
"eval_cosine_accuracy": 1.0,
|
47 |
+
"eval_dot_accuracy": 0.0,
|
48 |
+
"eval_euclidean_accuracy": 1.0,
|
49 |
+
"eval_loss": 0.16810357570648193,
|
50 |
+
"eval_manhattan_accuracy": 1.0,
|
51 |
+
"eval_max_accuracy": 1.0,
|
52 |
+
"eval_runtime": 64.351,
|
53 |
+
"eval_samples_per_second": 0.699,
|
54 |
+
"eval_steps_per_second": 0.047,
|
55 |
+
"step": 16
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 3.6363636363636362,
|
59 |
+
"grad_norm": 1.5101182460784912,
|
60 |
+
"learning_rate": 8.535533905932739e-06,
|
61 |
+
"loss": 0.1037,
|
62 |
+
"step": 20
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 4.0,
|
66 |
+
"eval_cosine_accuracy": 1.0,
|
67 |
+
"eval_dot_accuracy": 0.0,
|
68 |
+
"eval_euclidean_accuracy": 1.0,
|
69 |
+
"eval_loss": 0.132945716381073,
|
70 |
+
"eval_manhattan_accuracy": 1.0,
|
71 |
+
"eval_max_accuracy": 1.0,
|
72 |
+
"eval_runtime": 57.7743,
|
73 |
+
"eval_samples_per_second": 0.779,
|
74 |
+
"eval_steps_per_second": 0.052,
|
75 |
+
"step": 22
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 4.909090909090909,
|
79 |
+
"eval_cosine_accuracy": 1.0,
|
80 |
+
"eval_dot_accuracy": 0.0,
|
81 |
+
"eval_euclidean_accuracy": 1.0,
|
82 |
+
"eval_loss": 0.1265309602022171,
|
83 |
+
"eval_manhattan_accuracy": 1.0,
|
84 |
+
"eval_max_accuracy": 1.0,
|
85 |
+
"eval_runtime": 57.1986,
|
86 |
+
"eval_samples_per_second": 0.787,
|
87 |
+
"eval_steps_per_second": 0.052,
|
88 |
+
"step": 27
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 5.454545454545454,
|
92 |
+
"grad_norm": 3.2575457096099854,
|
93 |
+
"learning_rate": 5e-06,
|
94 |
+
"loss": 0.0643,
|
95 |
+
"step": 30
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 6.0,
|
99 |
+
"eval_cosine_accuracy": 1.0,
|
100 |
+
"eval_dot_accuracy": 0.0,
|
101 |
+
"eval_euclidean_accuracy": 1.0,
|
102 |
+
"eval_loss": 0.12450794875621796,
|
103 |
+
"eval_manhattan_accuracy": 1.0,
|
104 |
+
"eval_max_accuracy": 1.0,
|
105 |
+
"eval_runtime": 57.4285,
|
106 |
+
"eval_samples_per_second": 0.784,
|
107 |
+
"eval_steps_per_second": 0.052,
|
108 |
+
"step": 33
|
109 |
+
}
|
110 |
+
],
|
111 |
+
"logging_steps": 10,
|
112 |
+
"max_steps": 50,
|
113 |
+
"num_input_tokens_seen": 0,
|
114 |
+
"num_train_epochs": 10,
|
115 |
+
"save_steps": 500,
|
116 |
+
"stateful_callbacks": {
|
117 |
+
"EarlyStoppingCallback": {
|
118 |
+
"args": {
|
119 |
+
"early_stopping_patience": 5,
|
120 |
+
"early_stopping_threshold": 0.01
|
121 |
+
},
|
122 |
+
"attributes": {
|
123 |
+
"early_stopping_patience_counter": 2
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"TrainerControl": {
|
127 |
+
"args": {
|
128 |
+
"should_epoch_stop": false,
|
129 |
+
"should_evaluate": false,
|
130 |
+
"should_log": false,
|
131 |
+
"should_save": true,
|
132 |
+
"should_training_stop": false
|
133 |
+
},
|
134 |
+
"attributes": {}
|
135 |
+
}
|
136 |
+
},
|
137 |
+
"total_flos": 0.0,
|
138 |
+
"train_batch_size": 8,
|
139 |
+
"trial_name": null,
|
140 |
+
"trial_params": null
|
141 |
+
}
|
checkpoint-33/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5bd0b93b2bc206736e76a939a0672af14c80c5cf01af4b31cad5f6bd79f857c
|
3 |
+
size 5496
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "djovak/embedic-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.45.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.0",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adfa3c662d6af06d8e24845f5ee7ab6f3b57efc3c978d322d2d13da3e215a84f
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727769674.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5816e9e2cbeea5b67e21ebf44da2b71f4740eb76e68aa884cefb7aef360810a3
|
3 |
+
size 10518
|
runs/Oct01_08-01-11_r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch/events.out.tfevents.1727774367.r-luka023-autotrain-advanced-gjssstet-2e8d4-rjpch.108.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:212078f807d6155452aa11c4d16d947f46063f2456e0a55740b443eb3b4df201
|
3 |
+
size 644
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42fbf784ee16fec3bc557753a524df9e1c6959d0a13ff61366f6d0018341528d
|
3 |
+
size 17090510
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5bd0b93b2bc206736e76a939a0672af14c80c5cf01af4b31cad5f6bd79f857c
|
3 |
+
size 5496
|
training_params.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_path": "autotrain-kladionica/autotrain-data",
|
3 |
+
"model": "djovak/embedic-large",
|
4 |
+
"lr": 1e-05,
|
5 |
+
"epochs": 10,
|
6 |
+
"max_seq_length": 128,
|
7 |
+
"batch_size": 8,
|
8 |
+
"warmup_ratio": 0.2,
|
9 |
+
"gradient_accumulation": 4,
|
10 |
+
"optimizer": "adamw_torch",
|
11 |
+
"scheduler": "cosine",
|
12 |
+
"weight_decay": 0.01,
|
13 |
+
"max_grad_norm": 0.5,
|
14 |
+
"seed": 42,
|
15 |
+
"train_split": "train",
|
16 |
+
"valid_split": "validation",
|
17 |
+
"logging_steps": 10,
|
18 |
+
"project_name": "autotrain-kladionica",
|
19 |
+
"auto_find_batch_size": false,
|
20 |
+
"mixed_precision": "fp16",
|
21 |
+
"save_total_limit": 1,
|
22 |
+
"push_to_hub": true,
|
23 |
+
"eval_strategy": "epoch",
|
24 |
+
"username": "luka023",
|
25 |
+
"log": "tensorboard",
|
26 |
+
"early_stopping_patience": 5,
|
27 |
+
"early_stopping_threshold": 0.01,
|
28 |
+
"trainer": "triplet",
|
29 |
+
"sentence1_column": "autotrain_sentence1",
|
30 |
+
"sentence2_column": "autotrain_sentence2",
|
31 |
+
"sentence3_column": "autotrain_sentence3",
|
32 |
+
"target_column": "autotrain_target"
|
33 |
+
}
|