End of training
Browse files
README.md
CHANGED
@@ -2,7 +2,8 @@
|
|
2 |
library_name: transformers
|
3 |
language:
|
4 |
- np
|
5 |
-
|
|
|
6 |
tags:
|
7 |
- generated_from_trainer
|
8 |
metrics:
|
@@ -20,13 +21,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
# Nepali-BERT-devangari-sentiment
|
22 |
|
23 |
-
This model is a fine-tuned version of [
|
24 |
It achieves the following results on the evaluation set:
|
25 |
-
- Loss: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Precision: 0.
|
29 |
-
- Recall: 0.
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -45,28 +46,24 @@ More information needed
|
|
45 |
### Training hyperparameters
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
-
- learning_rate:
|
49 |
- train_batch_size: 16
|
50 |
- eval_batch_size: 16
|
51 |
- seed: 42
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_steps: 500
|
55 |
-
- num_epochs:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.248 | 5.0 | 5945 | 1.1782 | 0.8776 | 0.4582 | 0.4720 | 0.4451 |
|
67 |
-
| 0.1978 | 6.0 | 7134 | 1.2942 | 0.8648 | 0.4687 | 0.4316 | 0.5127 |
|
68 |
-
| 0.1504 | 7.0 | 8323 | 1.5298 | 0.8663 | 0.4609 | 0.4339 | 0.4916 |
|
69 |
-
| 0.1259 | 8.0 | 9512 | 1.6731 | 0.8761 | 0.4432 | 0.4642 | 0.4241 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
2 |
library_name: transformers
|
3 |
language:
|
4 |
- np
|
5 |
+
license: mit
|
6 |
+
base_model: Sakonii/deberta-base-nepali
|
7 |
tags:
|
8 |
- generated_from_trainer
|
9 |
metrics:
|
|
|
21 |
|
22 |
# Nepali-BERT-devangari-sentiment
|
23 |
|
24 |
+
This model is a fine-tuned version of [Sakonii/deberta-base-nepali](https://huggingface.co/Sakonii/deberta-base-nepali) on the Custom Devangari Datasets dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.6662
|
27 |
+
- Accuracy: 0.8710
|
28 |
+
- F1: 0.5130
|
29 |
+
- Precision: 0.4571
|
30 |
+
- Recall: 0.5844
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
46 |
### Training hyperparameters
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
- train_batch_size: 16
|
51 |
- eval_batch_size: 16
|
52 |
- seed: 42
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_steps: 500
|
56 |
+
- num_epochs: 4
|
57 |
- mixed_precision_training: Native AMP
|
58 |
|
59 |
### Training results
|
60 |
|
61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
62 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
63 |
+
| 0.6046 | 1.0 | 1189 | 0.5267 | 0.8167 | 0.4543 | 0.3475 | 0.6561 |
|
64 |
+
| 0.4952 | 2.0 | 2378 | 0.5396 | 0.8518 | 0.5025 | 0.4122 | 0.6435 |
|
65 |
+
| 0.412 | 3.0 | 3567 | 0.5733 | 0.8656 | 0.5098 | 0.4425 | 0.6013 |
|
66 |
+
| 0.3406 | 4.0 | 4756 | 0.6662 | 0.8710 | 0.5130 | 0.4571 | 0.5844 |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
### Framework versions
|
runs/Oct23_14-56-27_e17934a1dc81/events.out.tfevents.1729701916.e17934a1dc81.25136.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aad429096bf0bf1c1aa51ca6c04a81ae80a0d200a2bbdf9ed325a96d862e60fd
|
3 |
+
size 560
|