File size: 1,816 Bytes
072d4a1
9b2beb8
 
 
072d4a1
9b2beb8
 
 
072d4a1
 
9b2beb8
 
 
072d4a1
 
9b2beb8
 
072d4a1
9b2beb8
072d4a1
9b2beb8
 
a3094cf
 
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
072d4a1
9b2beb8
a3094cf
9b2beb8
 
 
 
 
 
 
 
072d4a1
9b2beb8
072d4a1
9b2beb8
 
a3094cf
 
 
 
 
072d4a1
 
9b2beb8
072d4a1
9b2beb8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sentiment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-sentiment

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb-dataset-of-50k-movie-reviews dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3021
- Accuracy: 0.9144

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3378        | 1.0   | 1250 | 0.2327          | 0.9042   |
| 0.186         | 2.0   | 2500 | 0.2519          | 0.9117   |
| 0.1135        | 3.0   | 3750 | 0.3021          | 0.9144   |
| 0.0706        | 4.0   | 5000 | 0.3474          | 0.9125   |
| 0.0453        | 5.0   | 6250 | 0.3919          | 0.9135   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1