File size: 1,816 Bytes
072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 a3094cf 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 a3094cf 9b2beb8 072d4a1 9b2beb8 072d4a1 9b2beb8 a3094cf 072d4a1 9b2beb8 072d4a1 9b2beb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sentiment
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb-dataset-of-50k-movie-reviews dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3021
- Accuracy: 0.9144
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3378 | 1.0 | 1250 | 0.2327 | 0.9042 |
| 0.186 | 2.0 | 2500 | 0.2519 | 0.9117 |
| 0.1135 | 3.0 | 3750 | 0.3021 | 0.9144 |
| 0.0706 | 4.0 | 5000 | 0.3474 | 0.9125 |
| 0.0453 | 5.0 | 6250 | 0.3919 | 0.9135 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|