luluw commited on
Commit
072d4a1
1 Parent(s): 8b28684

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - sentiment-analysis
5
+ - transformers
6
+ - pytorch
7
+ license: apache-2.0
8
+ datasets:
9
+ - custom-dataset
10
+ metrics:
11
+ - accuracy
12
+ model_name: distilbert-base-uncased-finetuned-sentiment
13
+ ---
14
+
15
+ # DistilBERT Base Uncased Fine-tuned for Sentiment Analysis
16
+
17
+ ## Model Description
18
+
19
+ This model is a fine-tuned version of `distilbert-base-uncased` on a sentiment analysis dataset. It is trained to classify text into positive and negative sentiment categories.
20
+
21
+ ## Training Details
22
+
23
+ The model was fine-tuned on a sentiment analysis dataset using the Hugging Face `transformers` library. The training parameters are as follows:
24
+
25
+ - **Learning Rate**: 2e-5
26
+ - **Batch Size**: 32
27
+ - **Number of Epochs**: 4
28
+ - **Optimizer**: AdamW
29
+ - **Scheduler**: Linear with warmup
30
+ - **Device**: Nvidia T4 GPU
31
+
32
+ ## Training and Validation Metrics
33
+
34
+ | Step | Training Loss | Validation Loss | Accuracy |
35
+ |------|---------------|-----------------|----------|
36
+ | 400 | 0.389300 | 0.181316 | 93.25% |
37
+ | 800 | 0.161900 | 0.166204 | 94.13% |
38
+ | 1200 | 0.114600 | 0.200135 | 94.30% |
39
+ | 1600 | 0.076300 | 0.211609 | 94.40% |
40
+ | 2000 | 0.041600 | 0.225439 | 94.45% |
41
+
42
+ Final training metrics:
43
+
44
+ - **Global Step**: 2000
45
+ - **Training Loss**: 0.156715
46
+ - **Training Runtime**: 1257.5696 seconds
47
+ - **Training Samples per Second**: 50.892
48
+ - **Training Steps per Second**: 1.59
49
+ - **Total FLOPS**: 8477913513984000.0
50
+ - **Epochs**: 4.0
51
+
52
+ ## Model Performance
53
+
54
+ The model achieves an accuracy of approximately 94.45% on the validation set.
55
+
56
+ ## Usage
57
+
58
+ To use this model for sentiment analysis, you can load it using the `transformers` library:
59
+
60
+ ```python
61
+ from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
62
+
63
+ model_name = 'luluw/distilbert-base-uncased-finetuned-sentiment'
64
+ tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
65
+ model = DistilBertForSequenceClassification.from_pretrained(model_name)
66
+
67
+ # Example usage
68
+ text = "I love this product!"
69
+ inputs = tokenizer(text, return_tensors='pt')
70
+ outputs = model(**inputs)
71
+ predictions = torch.argmax(outputs.logits, dim=-1)
72
+ ```