--- library_name: transformers language: - en license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sentiment results: [] --- # distilbert-base-uncased-finetuned-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb-dataset-of-50k-movie-reviews dataset. It achieves the following results on the evaluation set: - Loss: 0.3021 - Accuracy: 0.9144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3378 | 1.0 | 1250 | 0.2327 | 0.9042 | | 0.186 | 2.0 | 2500 | 0.2519 | 0.9117 | | 0.1135 | 3.0 | 3750 | 0.3021 | 0.9144 | | 0.0706 | 4.0 | 5000 | 0.3474 | 0.9125 | | 0.0453 | 5.0 | 6250 | 0.3919 | 0.9135 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1