Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
<p align="center" width="100%">
|
6 |
+
<img src="https://i.postimg.cc/MKmyP9wH/new-banner.png" width="80%" height="80%">
|
7 |
+
</p>
|
8 |
+
|
9 |
+
|
10 |
+
<div>
|
11 |
+
<div align="center">
|
12 |
+
<a href='https://brianboli.com/' target='_blank'>Bo Li*<sup>1</sup></a> 
|
13 |
+
<a href='https://zhangyuanhan-ai.github.io/' target='_blank'>Yuanhan Zhang*<sup>,1</sup></a> 
|
14 |
+
<a href='https://cliangyu.com/' target='_blank'>Liangyu Chen*<sup>,1</sup></a> 
|
15 |
+
<a href='https://king159.github.io/' target='_blank'>Jinghao Wang*<sup>,1</sup></a> 
|
16 |
+
<a href='https://pufanyi.github.io/' target='_blank'>Fanyi Pu*<sup>,1</sup></a> 
|
17 |
+
</br>
|
18 |
+
<a href='https://jingkang50.github.io/' target='_blank'>Jingkang Yang<sup>1</sup></a> 
|
19 |
+
<a href='https://chunyuan.li/' target='_blank'>Chunyuan Li<sup>2</sup></a> 
|
20 |
+
<a href='https://liuziwei7.github.io/' target='_blank'>Ziwei Liu<sup>1</sup></a>
|
21 |
+
</div>
|
22 |
+
<div>
|
23 |
+
<div align="center">
|
24 |
+
<sup>1</sup>S-Lab, Nanyang Technological University 
|
25 |
+
<sup>2</sup>Microsoft Research, Redmond
|
26 |
+
</div>
|
27 |
+
|
28 |
+
This weight is for **initilizing training for Otter-MPT1B**.
|
29 |
+
|
30 |
+
It's directly converted from [openflamingo/OpenFlamingo-3B-vitl-mpt1b-langinstruct](https://huggingface.co/openflamingo/OpenFlamingo-3B-vitl-mpt1b-langinstruct).
|
31 |
+
|
32 |
+
You can load and try this model using
|
33 |
+
```python
|
34 |
+
model = OtterForConditionalGeneration.from_pretrained("luodian/OTTER-MPT7B-Init", device_map="sequential")
|
35 |
+
model.text_tokenizer.padding_side = "left"
|
36 |
+
tokenizer = model.text_tokenizer
|
37 |
+
image_processor = transformers.CLIPImageProcessor()
|
38 |
+
model.eval()
|
39 |
+
```
|
40 |
+
|
41 |
+
You can also start training Otter via the commands
|
42 |
+
```python
|
43 |
+
python -m accelerate.commands.launch --config_file=./pipeline/accelerate_configs/accelerate_config_fsdp.yaml \
|
44 |
+
pipeline/train/instruction_following.py \
|
45 |
+
--pretrained_model_name_or_path=luodian/OTTER-MPT1B-RPJama-Init \
|
46 |
+
--mimicit_path=/data/azure_storage/otter/mimicit/xx/xx_instructions.json \
|
47 |
+
--images_path=/data/azure_storage/otter/mimicit/xx/xx.json \
|
48 |
+
--batch_size=4 --num_epochs=1 --report_to_wandb \
|
49 |
+
--wandb_entity=ntu-slab \
|
50 |
+
--external_save_dir=/data/bli/checkpoints \
|
51 |
+
--save_hf_model \
|
52 |
+
--run_name=OTTER-MPT1B \
|
53 |
+
--wandb_project=OTTER-MPT1B \
|
54 |
+
--workers=4 \
|
55 |
+
--lr_scheduler=cosine \
|
56 |
+
--learning_rate=1e-5 \
|
57 |
+
--warmup_steps_ratio=0.01
|
58 |
+
```
|
59 |
+
|
60 |
+
Leave us a message if you have any error or question. You can follow [Otter code](https://github.com/Luodian/Otter) (see training section) to further tune your model on top of it.
|