lwef commited on
Commit
4961031
Β·
verified Β·
1 Parent(s): 39fac1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -11,12 +11,53 @@ tags:
11
  - trl
12
  ---
13
 
14
- # Uploaded model
15
-
16
- - **Developed by:** lsef
17
  - **License:** apache-2.0
18
  - **Finetuned from model :** beomi/Llama-3-Open-Ko-8B
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
11
  - trl
12
  ---
13
 
14
+ - **Developed by:** lwef
 
 
15
  - **License:** apache-2.0
16
  - **Finetuned from model :** beomi/Llama-3-Open-Ko-8B
17
 
18
+ # korean dialogue summary fine-tuned model
19
+ # how to use
20
+ ```python
21
+ prompt_template = '''
22
+ μ•„λž˜ λŒ€ν™”λ₯Ό μš”μ•½ν•΄ μ£Όμ„Έμš”. λŒ€ν™” ν˜•μ‹μ€ '#λŒ€ν™” μ°Έμ—¬μž#: λŒ€ν™” λ‚΄μš©'μž…λ‹ˆλ‹€.
23
+ ### λŒ€ν™” >>>{dialogue}
24
+
25
+ ### μš”μ•½ >>>'''
26
+
27
+ if True:
28
+ from unsloth import FastLanguageModel
29
+ model, tokenizer = FastLanguageModel.from_pretrained(
30
+ model_name = "lwef/llama3-8B-ko-dialogue-summary-finetuned", # YOUR MODEL YOU USED FOR TRAINING
31
+ max_seq_length = 2048,
32
+ dtype = None,
33
+ load_in_4bit = True,
34
+ )
35
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
36
+ dialogue = '''#P01#: μ•„ ν–‰μ‚Ά 과제 λ„ˆλ¬΄ μ–΄λ €μ›Œ... 5μͺ½ μ“Έκ²Œ μ—†λŠ”λ° γ…‘γ…‘ #P02#: λͺ¬λƒλͺ¬λƒλ„ˆκ°€λ”μž˜μ¨ γ…Žγ…Ž #P01#: 5μͺ½ λŒ€μΆ© μ˜μ‹μ˜ νλ¦„λŒ€λ‘œ μ­‰ 써야지..이제 1μͺ½μ”€ ;; 5μͺ½ μ—λŠ” λ„€μ€„λ§Œ 적어야지 #P02#: μ•ˆλŒ€... λ­”κ°€λΆ„λŸ‰μ€‘μš”ν• κ±°κ°™μ•„ κ±°μ˜κ½‰μ±„μ›Œμ„œμ“°μ…ˆ #P01#: λͺ»μ¨ 쓸말업써 #P02#: μ΄κ±°μ€‘κ°„λŒ€μ²΄μ—¬?? #P01#: γ„΄γ„΄ κ·Έλƒ₯ κ³Όμ œμž„ κ·Έλž˜μ„œ 더 μ§œμ¦λ‚¨'''
37
+
38
+ formatted_prompt = prompt_template.format(dialogue=dialogue)
39
+
40
+ # ν† ν¬λ‚˜μ΄μ§•
41
+ inputs = tokenizer(
42
+ formatted_prompt,
43
+ return_tensors="pt"
44
+ ).to("cuda")
45
+
46
+ outputs = model.generate(
47
+ **inputs,
48
+ max_new_tokens = 128,
49
+ eos_token_id=tokenizer.eos_token_id, # EOS 토큰을 μ‚¬μš©ν•˜μ—¬ λͺ…μ‹œμ μœΌλ‘œ 좜λ ₯의 끝을 지정.
50
+ use_cache = True
51
+ )
52
+ decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
53
+ result = decoded_outputs[0]
54
+
55
+ print(result)
56
+ result = result.split('### μš”μ•½ >>>')[-1].strip()
57
+ print(result)
58
+ ```
59
+
60
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
61
 
62
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
63
+ I highly recommend checking the Unsloth notebook.