Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: microsoft-research-license
|
4 |
+
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- nlp
|
10 |
+
- code
|
11 |
+
model-index:
|
12 |
+
- name: phi-2-dpo
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: text-generation
|
16 |
+
dataset:
|
17 |
+
name: AlpacaEval
|
18 |
+
type: AlpacaEval
|
19 |
+
metrics:
|
20 |
+
- name: AlpacaEval
|
21 |
+
type: AlpacaEval
|
22 |
+
value: 81.37%
|
23 |
+
source:
|
24 |
+
name: AlpacaEval
|
25 |
+
url: https://github.com/tatsu-lab/alpaca_eval
|
26 |
+
---
|
27 |
+
|
28 |
+
## Model Summary
|
29 |
+
|
30 |
+
`phi-2-dpo` is an instruction-tuned model from an earlier SFT model [`phi-2-sft`](https://huggingface.co/lxuechen/phi-2-sft). Direct preference optimization (DPO) is used for fine-tuning on the [UltraFeedback dataset](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
31 |
+
|
32 |
+
The purpose of the experiment is to understand the quality of the pre-trained Phi-2 model. The good news is that `phi-2-dpo` can follow open-ended user instructions well.
|