|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for sequence to sequence. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import json |
|
|
|
import numpy as np |
|
from datasets import load_dataset |
|
import jieba |
|
from rouge_chinese import Rouge |
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction |
|
import torch |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoTokenizer, |
|
AutoTokenizer, |
|
DataCollatorForSeq2Seq, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
set_seed, |
|
) |
|
from trainer_seq2seq import Seq2SeqTrainer |
|
|
|
from arguments import ModelArguments, DataTrainingArguments |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
|
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
|
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) |
|
config.pre_seq_len = model_args.pre_seq_len |
|
config.prefix_projection = model_args.prefix_projection |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) |
|
|
|
if model_args.ptuning_checkpoint is not None: |
|
|
|
|
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) |
|
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin")) |
|
new_prefix_state_dict = {} |
|
for k, v in prefix_state_dict.items(): |
|
if k.startswith("transformer.prefix_encoder."): |
|
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v |
|
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) |
|
else: |
|
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) |
|
|
|
if model_args.quantization_bit is not None: |
|
print(f"Quantized to {model_args.quantization_bit} bit") |
|
model = model.quantize(model_args.quantization_bit) |
|
if model_args.pre_seq_len is not None: |
|
|
|
model = model.half() |
|
model.transformer.prefix_encoder.float() |
|
else: |
|
|
|
model = model.float() |
|
|
|
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = raw_datasets["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = raw_datasets["validation"].column_names |
|
elif training_args.do_predict: |
|
column_names = raw_datasets["test"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") |
|
return |
|
|
|
|
|
prompt_column = data_args.prompt_column |
|
response_column = data_args.response_column |
|
history_column = data_args.history_column |
|
|
|
|
|
max_target_length = data_args.max_target_length |
|
|
|
def preprocess_function_eval(examples): |
|
inputs, targets = [], [] |
|
for i in range(len(examples[prompt_column])): |
|
if examples[prompt_column][i] and examples[response_column][i]: |
|
query = examples[prompt_column][i] |
|
if history_column is None or len(examples[history_column][i]) == 0: |
|
prompt = query |
|
else: |
|
prompt = "" |
|
history = examples[history_column][i] |
|
for turn_idx, (old_query, response) in enumerate(history): |
|
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response) |
|
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) |
|
inputs.append(prompt) |
|
targets.append(examples[response_column][i]) |
|
|
|
inputs = [prefix + inp for inp in inputs] |
|
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True) |
|
labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True) |
|
|
|
if data_args.ignore_pad_token_for_loss: |
|
labels["input_ids"] = [ |
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] |
|
] |
|
model_inputs["labels"] = labels["input_ids"] |
|
|
|
return model_inputs |
|
|
|
def preprocess_function_train(examples): |
|
max_seq_length = data_args.max_source_length + data_args.max_target_length |
|
|
|
model_inputs = { |
|
"input_ids": [], |
|
"labels": [], |
|
} |
|
for i in range(len(examples[prompt_column])): |
|
if examples[prompt_column][i] and examples[response_column][i]: |
|
query, answer = examples[prompt_column][i], examples[response_column][i] |
|
|
|
if history_column is None: |
|
prompt = query |
|
else: |
|
prompt = "" |
|
history = examples[history_column][i] |
|
for turn_idx, (old_query, response) in enumerate(history): |
|
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response) |
|
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) |
|
|
|
prompt = prefix + prompt |
|
a_ids = tokenizer.encode(text=prompt, add_special_tokens=False) |
|
b_ids = tokenizer.encode(text=answer, add_special_tokens=False) |
|
|
|
if len(a_ids) > data_args.max_source_length - 1: |
|
a_ids = a_ids[: data_args.max_source_length - 1] |
|
|
|
if len(b_ids) > data_args.max_target_length - 2: |
|
b_ids = b_ids[: data_args.max_target_length - 2] |
|
|
|
input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids) |
|
|
|
context_length = input_ids.index(tokenizer.bos_token_id) |
|
mask_position = context_length - 1 |
|
labels = [-100] * context_length + input_ids[mask_position+1:] |
|
|
|
pad_len = max_seq_length - len(input_ids) |
|
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len |
|
labels = labels + [tokenizer.pad_token_id] * pad_len |
|
if data_args.ignore_pad_token_for_loss: |
|
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels] |
|
|
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["labels"].append(labels) |
|
|
|
return model_inputs |
|
|
|
def print_dataset_example(example): |
|
print("input_ids",example["input_ids"]) |
|
print("inputs", tokenizer.decode(example["input_ids"])) |
|
print("label_ids", example["labels"]) |
|
print("labels", tokenizer.decode(example["labels"])) |
|
|
|
if training_args.do_train: |
|
if "train" not in raw_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = raw_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
with training_args.main_process_first(desc="train dataset map pre-processing"): |
|
train_dataset = train_dataset.map( |
|
preprocess_function_train, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
print_dataset_example(train_dataset[0]) |
|
|
|
if training_args.do_eval: |
|
max_target_length = data_args.val_max_target_length |
|
if "validation" not in raw_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = raw_datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
with training_args.main_process_first(desc="validation dataset map pre-processing"): |
|
eval_dataset = eval_dataset.map( |
|
preprocess_function_eval, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
print_dataset_example(eval_dataset[0]) |
|
|
|
if training_args.do_predict: |
|
max_target_length = data_args.val_max_target_length |
|
if "test" not in raw_datasets: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = raw_datasets["test"] |
|
if data_args.max_predict_samples is not None: |
|
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) |
|
predict_dataset = predict_dataset.select(range(max_predict_samples)) |
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"): |
|
predict_dataset = predict_dataset.map( |
|
preprocess_function_eval, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on prediction dataset", |
|
) |
|
print_dataset_example(predict_dataset[0]) |
|
|
|
|
|
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id |
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
label_pad_token_id=label_pad_token_id, |
|
pad_to_multiple_of=None, |
|
padding=False |
|
) |
|
|
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
if data_args.ignore_pad_token_for_loss: |
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
score_dict = { |
|
"rouge-1": [], |
|
"rouge-2": [], |
|
"rouge-l": [], |
|
"bleu-4": [] |
|
} |
|
for pred, label in zip(decoded_preds, decoded_labels): |
|
hypothesis = list(jieba.cut(pred)) |
|
reference = list(jieba.cut(label)) |
|
rouge = Rouge() |
|
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference)) |
|
result = scores[0] |
|
|
|
for k, v in result.items(): |
|
score_dict[k].append(round(v["f"] * 100, 4)) |
|
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) |
|
score_dict["bleu-4"].append(round(bleu_score * 100, 4)) |
|
|
|
for k, v in score_dict.items(): |
|
score_dict[k] = float(np.mean(v)) |
|
return score_dict |
|
|
|
|
|
training_args.generation_max_length = ( |
|
training_args.generation_max_length |
|
if training_args.generation_max_length is not None |
|
else data_args.val_max_target_length |
|
) |
|
training_args.generation_num_beams = ( |
|
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams |
|
) |
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None, |
|
save_prefixencoder=model_args.pre_seq_len is not None |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
|
|
|
|
model.gradient_checkpointing_enable() |
|
model.enable_input_require_grads() |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
|
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=512, temperature=0.95) |
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=512, do_sample=True, top_p=0.7, temperature=0.95) |
|
metrics = predict_results.metrics |
|
max_predict_samples = ( |
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) |
|
) |
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) |
|
|
|
trainer.log_metrics("predict", metrics) |
|
trainer.save_metrics("predict", metrics) |
|
|
|
if trainer.is_world_process_zero(): |
|
if training_args.predict_with_generate: |
|
predictions = tokenizer.batch_decode( |
|
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
predictions = [pred.strip() for pred in predictions] |
|
labels = tokenizer.batch_decode( |
|
predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
labels = [label.strip() for label in labels] |
|
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt") |
|
with open(output_prediction_file, "w", encoding="utf-8") as writer: |
|
for p, l in zip(predictions, labels): |
|
res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False) |
|
writer.write(f"{res}\n") |
|
return results |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|