File size: 1,629 Bytes
83b7d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from datasets import load_dataset
from transformers import Pipeline, SpeechT5Processor, SpeechT5HifiGan


class TTSPipeline(Pipeline):
    def __init__(self, *args, vocoder=None, processor=None, **kwargs):
        super().__init__(*args, **kwargs)

        if vocoder is None:
            raise ValueError("Must pass a vocoder to the TTSPipeline.")

        if processor is None:
            raise ValueError("Must pass a processor to the TTSPipeline.")

        if isinstance(vocoder, str):
            vocoder = SpeechT5HifiGan.from_pretrained(vocoder)

        if isinstance(processor, str):
            processor = SpeechT5Processor.from_pretrained(processor)

        self.processor = processor
        self.vocoder = vocoder

    def preprocess(self, text, speaker_embeddings=None):
        inputs = self.processor(text=text, return_tensors='pt')

        if speaker_embeddings is None:
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0)

        return {'inputs': inputs, 'speaker_embeddings': speaker_embeddings}

    def _forward(self, model_inputs):
        inputs = model_inputs['inputs']
        speaker_embeddings = model_inputs['speaker_embeddings']

        with torch.no_grad():
            speech = self.model.generate_speech(inputs['input_ids'], speaker_embeddings, vocoder=self.vocoder)

        return speech

    def _sanitize_parameters(self, **pipeline_parameters):
        return {}, {}, {}

    def postprocess(self, speech):
        return speech