File size: 3,210 Bytes
4eaed6f f568bd9 4eaed6f f568bd9 4eaed6f ec67359 4eaed6f fc4fca6 4eaed6f 51f6e43 4eaed6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- en
- ja
license: llama3
tags:
- machine translation
- MT
- llama-3
metrics:
- comet
pipeline_tag: translation
---
# Overview
This model is based on rinna's [rinna/llama-3-youko-8b], fine-tuned using LoRA on a small number of parallel sentences from English to Japanese. The model has a COMET (Unbabel/wmt22-comet-da) of 0.9126 and BLEU ("tok": "ja-mecab-0.996-IPA") of 35.2 on flores200 devtest.
* **Model architecture**
A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details.
---
# How to use the model
~~~~python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
response_template= "\n### 日本語:\n"
prefix= "### 次の英語のテキストを日本語に翻訳してください:\n英語:\n"
def create_input(text, tokenizer):
text = f"{prefix}{text}{response_template}"
input_ids = tokenizer.encode(text, return_tensors="pt")
return input_ids
model_id = "lyu-boxuan/llama-3-youko-8b-En-Ja-MT-LoRA"
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
en = "LLMs Are Here but Not Quite There Yet"
input_ids = create_input(en, tokenizer).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
num_beams=5,
do_sample=False,
early_stopping=True,
)
response = outputs[0][input_ids.shape[-1] :]
print(tokenizer.decode(response, skip_special_tokens=True))
~~~~
---
# Tokenization
The model uses the original meta-llama/Meta-Llama-3-8B tokenizer.
# References
```bibtex
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@software{gpt-neox-library,
title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
doi = {10.5281/zenodo.5879544},
month = {8},
year = {2021},
version = {0.0.1},
url = {https://www.github.com/eleutherai/gpt-neox},
}
@misc{rinna-llama-3-youko-8b,
title = {rinna/llama-3-youko-8b},
author = {Mitsuda, Koh and Sawada, Kei},
url = {https://huggingface.co/rinna/llama-3-youko-8b},
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
url = {https://arxiv.org/abs/2404.01657},
}
```
---
# License |