|
""" |
|
MERT model definition. |
|
We largely adapt codes from: |
|
1. https://github.com/huggingface/transformers/blob/main/src/transformers/models/hubert/modeling_hubert.py |
|
2. https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py |
|
""" |
|
|
|
from typing import Optional, Tuple, Union |
|
from transformers.modeling_outputs import BaseModelOutput |
|
import torch |
|
from torch import nn |
|
|
|
from transformers.models.hubert.modeling_hubert import ( |
|
HubertFeatureEncoder, |
|
HubertModel, |
|
HubertEncoderStableLayerNorm, |
|
HubertEncoder, |
|
HubertEncoderLayer, |
|
HubertPositionalConvEmbedding, |
|
HubertAttention, |
|
HubertFeedForward, |
|
) |
|
|
|
try: |
|
from nnAudio import features as nnAudioFeatures |
|
NNAUDIO_INSTALLED=True |
|
except: |
|
print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'") |
|
NNAUDIO_INSTALLED=False |
|
|
|
from .configuration_MERT import MERTConfig |
|
|
|
class MERTFeatureProjection(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.feat_proj_layer_norm = config.feat_proj_layer_norm |
|
self.feature_extractor_cqt = config.feature_extractor_cqt |
|
|
|
if self.feature_extractor_cqt: |
|
|
|
self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins |
|
print(f"feature dimention: {self.feature_dimension}") |
|
else: |
|
self.feature_dimension = config.conv_dim[-1] |
|
if self.feat_proj_layer_norm: |
|
self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps) |
|
self.projection = nn.Linear(self.feature_dimension, config.hidden_size) |
|
self.dropout = nn.Dropout(config.feat_proj_dropout) |
|
|
|
def forward(self, hidden_states): |
|
|
|
if self.feat_proj_layer_norm: |
|
hidden_states = self.layer_norm(hidden_states) |
|
hidden_states = self.projection(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
class MERTModel(HubertModel): |
|
|
|
config_class = MERTConfig |
|
base_model_prefix = "mert_model" |
|
def __init__( |
|
self, |
|
config: MERTConfig, |
|
) -> None: |
|
""" |
|
initialize the with the grandparent method HubertPreTrainedModel.__init__() |
|
and modify the HuBERTModel.__init__() |
|
""" |
|
super(HubertModel, self).__init__(config) |
|
|
|
self.config = config |
|
|
|
self.feature_extractor = HubertFeatureEncoder(config) |
|
self.feature_projection = MERTFeatureProjection(config) |
|
|
|
if self.config.feature_extractor_cqt: |
|
assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` " |
|
print('initializing cqt extractor for MERT') |
|
self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7, |
|
fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7, |
|
filter_scale=1, norm=1, window='hann', center=True, |
|
pad_mode='constant', trainable=False, |
|
output_format='Magnitude', verbose=True) |
|
|
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: |
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) |
|
|
|
|
|
if config.do_stable_layer_norm: |
|
assert not config.deepnorm, "must use post-layer_norm with deepnorm" |
|
self.encoder = HubertEncoderStableLayerNorm(config) |
|
else: |
|
if config.deepnorm: |
|
self.encoder = HubertEncoder_extend(config) |
|
else: |
|
self.encoder = HubertEncoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]: |
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
|
|
|
|
if self.config.feature_extractor_cqt: |
|
features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2) |
|
features_cqt = features_cqt[:,:extract_features.shape[1],:] |
|
|
|
|
|
|
|
|
|
extract_features = torch.cat([extract_features,features_cqt], 2) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) |
|
|
|
hidden_states = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class HubertEncoder_extend(HubertEncoder): |
|
def __init__(self, config): |
|
|
|
|
|
nn.Module.__init__(self) |
|
|
|
|
|
self.config = config |
|
self.pos_conv_embed = HubertPositionalConvEmbedding(config) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
|
|
|
|
self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
if config.deepnorm: |
|
import math |
|
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25) |
|
for name, p in self.named_parameters(): |
|
if ( |
|
"feed_forward.intermediate_dense" in name |
|
or "feed_forward.output_dense" in name |
|
or "out_proj" in name |
|
or "v_proj" in name |
|
): |
|
p.data.div_(init_scale) |
|
|
|
class HubertEncoderLayerExtend(HubertEncoderLayer): |
|
def __init__(self, config): |
|
nn.Module.__init__(self) |
|
|
|
if config.attention_relax > 0 : |
|
self.attention = HubertAttention_extend( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=False, |
|
attention_relax=config.attention_relax, |
|
) |
|
else: |
|
self.attention = HubertAttention( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=False, |
|
) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.feed_forward = HubertFeedForward(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
if config.deepnorm: |
|
import math |
|
self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25) |
|
else: |
|
self.residual_alpha = 1.0 |
|
|
|
def residual_connection(self, x, residual): |
|
''' |
|
residual: input before f() |
|
x: output of f(residual) |
|
''' |
|
return residual * self.residual_alpha + x |
|
|
|
def forward(self, hidden_states, attention_mask=None, output_attentions=False): |
|
attn_residual = hidden_states |
|
hidden_states, attn_weights, _ = self.attention( |
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions |
|
) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
hidden_states = self.residual_connection(hidden_states, attn_residual) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
|
|
ffn_residual = hidden_states |
|
hidden_states = self.feed_forward(hidden_states) |
|
hidden_states = self.residual_connection(hidden_states, ffn_residual) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class HubertAttention_extend(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = True, |
|
attention_relax: float = -1.0, |
|
): |
|
super().__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
if attention_relax > 0: |
|
self.attention_relax = attention_relax |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
|
|
|
|
|
|
if ( |
|
is_cross_attention |
|
and past_key_value is not None |
|
and past_key_value[0].shape[2] == key_value_states.shape[1] |
|
): |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
else: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if self.attention_relax > 0: |
|
|
|
|
|
|
|
attn_weights_relax = attn_weights / self.attention_relax |
|
|
|
|
|
attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2) |
|
attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped, past_key_value |
|
|