nicolaus625 commited on
Commit
5295899
·
verified ·
1 Parent(s): 343cf5a

Update the Readme file

Browse files
Files changed (1) hide show
  1. README.md +115 -190
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
-
6
  # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
  ## Model Details
13
-
14
  ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - music
7
+ - art
8
  ---
 
9
  # Model Card for Model ID
 
 
 
 
 
10
  ## Model Details
 
11
  ### Model Description
12
+ The model consists of a music encoder ```MERT-v1-300M```, a natural language decoder ```vicuna-7b-delta-v0```, and a linear projection laer between the two.
13
 
14
+ This checkpoint of MusiLingo is developed on the MusicInstruct (MI)-long and can answer long instructions with music raw audio, such as querying about the subjective feelings etc.
15
+ You can use the [MI](https://huggingface.co/datasets/m-a-p/Music-Instruct) dataset for the following demo
16
 
 
 
 
 
 
 
 
 
 
17
 
18
  ### Model Sources [optional]
19
+ - **Repository:** [GitHub repo](https://github.com/zihaod/MusiLingo)
20
+ - **Paper [optional]:** __[MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response](https://arxiv.org/abs/2309.08730)__
21
+ <!-- - **Demo [optional]:** [More Information Needed] -->
22
+
23
+
24
+
25
+ ## Getting Start
26
+ ```
27
+ from tqdm.auto import tqdm
28
+
29
+ import torch
30
+ from torch.utils.data import DataLoader
31
+ from transformers import Wav2Vec2FeatureExtractor
32
+ from transformers import StoppingCriteria, StoppingCriteriaList
33
+
34
+
35
+
36
+ class StoppingCriteriaSub(StoppingCriteria):
37
+ def __init__(self, stops=[], encounters=1):
38
+ super().__init__()
39
+ self.stops = stops
40
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
41
+ for stop in self.stops:
42
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
43
+ return True
44
+ return False
45
+
46
+ def answer(self, samples, stopping, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.5,
47
+ repetition_penalty=1.0, length_penalty=1, temperature=0.1, max_length=2000):
48
+ audio = samples["audio"].cuda()
49
+ audio_embeds, atts_audio = self.encode_audio(audio)
50
+ if 'instruction_input' in samples: # instruction dataset
51
+ #print('Instruction Batch')
52
+ instruction_prompt = []
53
+ for instruction in samples['instruction_input']:
54
+ prompt = '<Audio><AudioHere></Audio> ' + instruction
55
+ instruction_prompt.append(self.prompt_template.format(prompt))
56
+ audio_embeds, atts_audio = self.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
57
+ self.llama_tokenizer.padding_side = "right"
58
+ batch_size = audio_embeds.shape[0]
59
+ bos = torch.ones([batch_size, 1],
60
+ dtype=torch.long,
61
+ device=torch.device('cuda')) * self.llama_tokenizer.bos_token_id
62
+ bos_embeds = self.llama_model.model.embed_tokens(bos)
63
+ atts_bos = atts_audio[:, :1]
64
+ inputs_embeds = torch.cat([bos_embeds, audio_embeds], dim=1)
65
+ attention_mask = torch.cat([atts_bos, atts_audio], dim=1)
66
+ outputs = self.llama_model.generate(
67
+ inputs_embeds=inputs_embeds,
68
+ max_new_tokens=max_new_tokens,
69
+ stopping_criteria=stopping,
70
+ num_beams=num_beams,
71
+ do_sample=True,
72
+ min_length=min_length,
73
+ top_p=top_p,
74
+ repetition_penalty=repetition_penalty,
75
+ length_penalty=length_penalty,
76
+ temperature=temperature,
77
+ )
78
+ output_token = outputs[0]
79
+ if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
80
+ output_token = output_token[1:]
81
+ if output_token[0] == 1: # if there is a start token <s> at the beginning. remove it
82
+ output_token = output_token[1:]
83
+ output_text = self.llama_tokenizer.decode(output_token, add_special_tokens=False)
84
+ output_text = output_text.split('###')[0] # remove the stop sign '###'
85
+ output_text = output_text.split('Assistant:')[-1].strip()
86
+ return output_text
87
+
88
+ processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-330M",trust_remote_code=True)
89
+ ds = CMIDataset(processor, 'path/to/MI_dataset', 'test', question_type='long')
90
+ dl = DataLoader(
91
+ ds,
92
+ batch_size=1,
93
+ num_workers=0,
94
+ pin_memory=True,
95
+ shuffle=False,
96
+ drop_last=True,
97
+ collate_fn=ds.collater
98
+ )
99
+
100
+ stopping = StoppingCriteriaList([StoppingCriteriaSub([torch.tensor([835]).cuda(),
101
+ torch.tensor([2277, 29937]).cuda()])])
102
+
103
+ from transformers import AutoModel
104
+ model_long = AutoModel.from_pretrained("m-a-p/MusiLingo-long-v1")
105
+
106
+ for idx, sample in tqdm(enumerate(dl)):
107
+ ans = answer(Musilingo_long.model, sample, stopping, length_penalty=100, temperature=0.1)
108
+ txt = sample['text_input'][0]
109
+ print(txt)
110
+ print(and)
111
+ ```
112
+
113
+ # Citing This Work
114
+
115
+ If you find the work useful for your research, please consider citing it using the following BibTeX entry:
116
+ ```
117
+ @inproceedings{deng2024musilingo,
118
+ title={MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response},
119
+ author={Deng, Zihao and Ma, Yinghao and Liu, Yudong and Guo, Rongchen and Zhang, Ge and Chen, Wenhu and Huang, Wenhao and Benetos, Emmanouil},
120
+ booktitle={Proceedings of the 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024)},
121
+ year={2024},
122
+ organization={Association for Computational Linguistics}
123
+ }
124
+ ```