nicolaus625
commited on
Commit
•
2a4f061
1
Parent(s):
9f4cab1
Upload model
Browse files- config.json +20 -0
- configuration_musilingo.py +29 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +735 -0
- modelling_musilingo.py +1509 -0
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MusilingoModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_musilingo.MusiLingoConfig",
|
7 |
+
"AutoModel": "modelling_musilingo.MusilingoModel"
|
8 |
+
},
|
9 |
+
"device_8bit": 0,
|
10 |
+
"end_sym": "\n",
|
11 |
+
"llama_model": "lmsys/vicuna-7b-delta-v0",
|
12 |
+
"low_resource": false,
|
13 |
+
"max_txt_len": 32,
|
14 |
+
"mert_model": "m-a-p/MERT-v1-330M",
|
15 |
+
"model_type": "musilingo",
|
16 |
+
"prompt_path": "",
|
17 |
+
"prompt_template": "###Human: {} ###Assistant: ",
|
18 |
+
"torch_dtype": "float32",
|
19 |
+
"transformers_version": "4.39.3"
|
20 |
+
}
|
configuration_musilingo.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
PATH = "."
|
5 |
+
|
6 |
+
class MusiLingoConfig(PretrainedConfig):
|
7 |
+
model_type = "musilingo"
|
8 |
+
is_encoder_decoder = True
|
9 |
+
def __init__(self,
|
10 |
+
mert_model = "m-a-p/MERT-v1-330M",
|
11 |
+
llama_model = f'lmsys/vicuna-7b-delta-v0',
|
12 |
+
prompt_path = "",
|
13 |
+
prompt_template = '###Human: {} ###Assistant: ',
|
14 |
+
max_txt_len = 32,
|
15 |
+
end_sym = '\n',
|
16 |
+
low_resource = False,
|
17 |
+
device_8bit = 0,
|
18 |
+
# linear_ckpt_path = "",
|
19 |
+
**kwargs):
|
20 |
+
self.mert_model = mert_model
|
21 |
+
self.llama_model = llama_model
|
22 |
+
self.prompt_path = prompt_path
|
23 |
+
self.prompt_template = prompt_template
|
24 |
+
self.max_txt_len = max_txt_len
|
25 |
+
self.end_sym = end_sym
|
26 |
+
self.low_resource = low_resource
|
27 |
+
self.device_8bit = device_8bit
|
28 |
+
# self.linear_ckpt_path = linear_ckpt_path
|
29 |
+
super().__init__(**kwargs)
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c24790aba36855d1eb25095c68b7a3a782d09c5281d1ddebc788f6946c374b3b
|
3 |
+
size 4986465504
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81c614ec56b4947a29b7f48a1e0d557e0a12ef70cf626194da05c02a1cfb85ff
|
3 |
+
size 4947397256
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c56f6cdf43a6860aa3599b4158148b7941f1e7a12395fd7d4bb317bd591ba7e5
|
3 |
+
size 4821600024
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14755365376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.audio_encoder.encoder.layer_norm.bias": "model-00001-of-00003.safetensors",
|
7 |
+
"model.audio_encoder.encoder.layer_norm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.audio_encoder.encoder.layers.0.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
9 |
+
"model.audio_encoder.encoder.layers.0.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.audio_encoder.encoder.layers.0.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
11 |
+
"model.audio_encoder.encoder.layers.0.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.audio_encoder.encoder.layers.0.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
13 |
+
"model.audio_encoder.encoder.layers.0.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.audio_encoder.encoder.layers.0.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
15 |
+
"model.audio_encoder.encoder.layers.0.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
17 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
19 |
+
"model.audio_encoder.encoder.layers.0.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.audio_encoder.encoder.layers.0.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
21 |
+
"model.audio_encoder.encoder.layers.0.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.audio_encoder.encoder.layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
|
23 |
+
"model.audio_encoder.encoder.layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.audio_encoder.encoder.layers.1.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
25 |
+
"model.audio_encoder.encoder.layers.1.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.audio_encoder.encoder.layers.1.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
27 |
+
"model.audio_encoder.encoder.layers.1.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.audio_encoder.encoder.layers.1.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
29 |
+
"model.audio_encoder.encoder.layers.1.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.audio_encoder.encoder.layers.1.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
31 |
+
"model.audio_encoder.encoder.layers.1.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
33 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
35 |
+
"model.audio_encoder.encoder.layers.1.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"model.audio_encoder.encoder.layers.1.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
37 |
+
"model.audio_encoder.encoder.layers.1.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.audio_encoder.encoder.layers.1.layer_norm.bias": "model-00001-of-00003.safetensors",
|
39 |
+
"model.audio_encoder.encoder.layers.1.layer_norm.weight": "model-00001-of-00003.safetensors",
|
40 |
+
"model.audio_encoder.encoder.layers.10.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
41 |
+
"model.audio_encoder.encoder.layers.10.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.audio_encoder.encoder.layers.10.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
43 |
+
"model.audio_encoder.encoder.layers.10.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.audio_encoder.encoder.layers.10.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
45 |
+
"model.audio_encoder.encoder.layers.10.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"model.audio_encoder.encoder.layers.10.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
47 |
+
"model.audio_encoder.encoder.layers.10.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
49 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
51 |
+
"model.audio_encoder.encoder.layers.10.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
52 |
+
"model.audio_encoder.encoder.layers.10.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
53 |
+
"model.audio_encoder.encoder.layers.10.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
54 |
+
"model.audio_encoder.encoder.layers.10.layer_norm.bias": "model-00001-of-00003.safetensors",
|
55 |
+
"model.audio_encoder.encoder.layers.10.layer_norm.weight": "model-00001-of-00003.safetensors",
|
56 |
+
"model.audio_encoder.encoder.layers.11.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
57 |
+
"model.audio_encoder.encoder.layers.11.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
58 |
+
"model.audio_encoder.encoder.layers.11.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
59 |
+
"model.audio_encoder.encoder.layers.11.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
60 |
+
"model.audio_encoder.encoder.layers.11.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
61 |
+
"model.audio_encoder.encoder.layers.11.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
62 |
+
"model.audio_encoder.encoder.layers.11.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
63 |
+
"model.audio_encoder.encoder.layers.11.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
64 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
65 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
66 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
67 |
+
"model.audio_encoder.encoder.layers.11.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
68 |
+
"model.audio_encoder.encoder.layers.11.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
69 |
+
"model.audio_encoder.encoder.layers.11.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
70 |
+
"model.audio_encoder.encoder.layers.11.layer_norm.bias": "model-00001-of-00003.safetensors",
|
71 |
+
"model.audio_encoder.encoder.layers.11.layer_norm.weight": "model-00001-of-00003.safetensors",
|
72 |
+
"model.audio_encoder.encoder.layers.12.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
73 |
+
"model.audio_encoder.encoder.layers.12.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
74 |
+
"model.audio_encoder.encoder.layers.12.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
75 |
+
"model.audio_encoder.encoder.layers.12.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
76 |
+
"model.audio_encoder.encoder.layers.12.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
77 |
+
"model.audio_encoder.encoder.layers.12.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
78 |
+
"model.audio_encoder.encoder.layers.12.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
79 |
+
"model.audio_encoder.encoder.layers.12.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
80 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
81 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
82 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
83 |
+
"model.audio_encoder.encoder.layers.12.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
84 |
+
"model.audio_encoder.encoder.layers.12.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
85 |
+
"model.audio_encoder.encoder.layers.12.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
86 |
+
"model.audio_encoder.encoder.layers.12.layer_norm.bias": "model-00001-of-00003.safetensors",
|
87 |
+
"model.audio_encoder.encoder.layers.12.layer_norm.weight": "model-00001-of-00003.safetensors",
|
88 |
+
"model.audio_encoder.encoder.layers.13.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
89 |
+
"model.audio_encoder.encoder.layers.13.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
90 |
+
"model.audio_encoder.encoder.layers.13.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
91 |
+
"model.audio_encoder.encoder.layers.13.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
92 |
+
"model.audio_encoder.encoder.layers.13.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
93 |
+
"model.audio_encoder.encoder.layers.13.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
94 |
+
"model.audio_encoder.encoder.layers.13.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
95 |
+
"model.audio_encoder.encoder.layers.13.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
96 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
97 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
98 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
99 |
+
"model.audio_encoder.encoder.layers.13.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
100 |
+
"model.audio_encoder.encoder.layers.13.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
101 |
+
"model.audio_encoder.encoder.layers.13.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
102 |
+
"model.audio_encoder.encoder.layers.13.layer_norm.bias": "model-00001-of-00003.safetensors",
|
103 |
+
"model.audio_encoder.encoder.layers.13.layer_norm.weight": "model-00001-of-00003.safetensors",
|
104 |
+
"model.audio_encoder.encoder.layers.14.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
105 |
+
"model.audio_encoder.encoder.layers.14.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
106 |
+
"model.audio_encoder.encoder.layers.14.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
107 |
+
"model.audio_encoder.encoder.layers.14.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
108 |
+
"model.audio_encoder.encoder.layers.14.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
109 |
+
"model.audio_encoder.encoder.layers.14.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
110 |
+
"model.audio_encoder.encoder.layers.14.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
111 |
+
"model.audio_encoder.encoder.layers.14.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
112 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
113 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
114 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
115 |
+
"model.audio_encoder.encoder.layers.14.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
116 |
+
"model.audio_encoder.encoder.layers.14.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
117 |
+
"model.audio_encoder.encoder.layers.14.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.audio_encoder.encoder.layers.14.layer_norm.bias": "model-00001-of-00003.safetensors",
|
119 |
+
"model.audio_encoder.encoder.layers.14.layer_norm.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.audio_encoder.encoder.layers.15.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
121 |
+
"model.audio_encoder.encoder.layers.15.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.audio_encoder.encoder.layers.15.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
123 |
+
"model.audio_encoder.encoder.layers.15.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.audio_encoder.encoder.layers.15.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
125 |
+
"model.audio_encoder.encoder.layers.15.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
126 |
+
"model.audio_encoder.encoder.layers.15.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
127 |
+
"model.audio_encoder.encoder.layers.15.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
128 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
129 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
130 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
131 |
+
"model.audio_encoder.encoder.layers.15.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
132 |
+
"model.audio_encoder.encoder.layers.15.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
133 |
+
"model.audio_encoder.encoder.layers.15.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
134 |
+
"model.audio_encoder.encoder.layers.15.layer_norm.bias": "model-00001-of-00003.safetensors",
|
135 |
+
"model.audio_encoder.encoder.layers.15.layer_norm.weight": "model-00001-of-00003.safetensors",
|
136 |
+
"model.audio_encoder.encoder.layers.16.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
137 |
+
"model.audio_encoder.encoder.layers.16.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
138 |
+
"model.audio_encoder.encoder.layers.16.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
139 |
+
"model.audio_encoder.encoder.layers.16.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
140 |
+
"model.audio_encoder.encoder.layers.16.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
141 |
+
"model.audio_encoder.encoder.layers.16.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
142 |
+
"model.audio_encoder.encoder.layers.16.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
143 |
+
"model.audio_encoder.encoder.layers.16.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
144 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
145 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
146 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
147 |
+
"model.audio_encoder.encoder.layers.16.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
148 |
+
"model.audio_encoder.encoder.layers.16.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
149 |
+
"model.audio_encoder.encoder.layers.16.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
150 |
+
"model.audio_encoder.encoder.layers.16.layer_norm.bias": "model-00001-of-00003.safetensors",
|
151 |
+
"model.audio_encoder.encoder.layers.16.layer_norm.weight": "model-00001-of-00003.safetensors",
|
152 |
+
"model.audio_encoder.encoder.layers.17.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
153 |
+
"model.audio_encoder.encoder.layers.17.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
154 |
+
"model.audio_encoder.encoder.layers.17.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
155 |
+
"model.audio_encoder.encoder.layers.17.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
156 |
+
"model.audio_encoder.encoder.layers.17.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
157 |
+
"model.audio_encoder.encoder.layers.17.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
158 |
+
"model.audio_encoder.encoder.layers.17.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
159 |
+
"model.audio_encoder.encoder.layers.17.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
160 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
161 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
162 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
163 |
+
"model.audio_encoder.encoder.layers.17.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
164 |
+
"model.audio_encoder.encoder.layers.17.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
165 |
+
"model.audio_encoder.encoder.layers.17.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
166 |
+
"model.audio_encoder.encoder.layers.17.layer_norm.bias": "model-00001-of-00003.safetensors",
|
167 |
+
"model.audio_encoder.encoder.layers.17.layer_norm.weight": "model-00001-of-00003.safetensors",
|
168 |
+
"model.audio_encoder.encoder.layers.18.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
169 |
+
"model.audio_encoder.encoder.layers.18.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
170 |
+
"model.audio_encoder.encoder.layers.18.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
171 |
+
"model.audio_encoder.encoder.layers.18.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"model.audio_encoder.encoder.layers.18.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
173 |
+
"model.audio_encoder.encoder.layers.18.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
174 |
+
"model.audio_encoder.encoder.layers.18.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
175 |
+
"model.audio_encoder.encoder.layers.18.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
176 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
177 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
178 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
179 |
+
"model.audio_encoder.encoder.layers.18.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
180 |
+
"model.audio_encoder.encoder.layers.18.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
181 |
+
"model.audio_encoder.encoder.layers.18.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
182 |
+
"model.audio_encoder.encoder.layers.18.layer_norm.bias": "model-00001-of-00003.safetensors",
|
183 |
+
"model.audio_encoder.encoder.layers.18.layer_norm.weight": "model-00001-of-00003.safetensors",
|
184 |
+
"model.audio_encoder.encoder.layers.19.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
185 |
+
"model.audio_encoder.encoder.layers.19.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
186 |
+
"model.audio_encoder.encoder.layers.19.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
187 |
+
"model.audio_encoder.encoder.layers.19.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
188 |
+
"model.audio_encoder.encoder.layers.19.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
189 |
+
"model.audio_encoder.encoder.layers.19.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
190 |
+
"model.audio_encoder.encoder.layers.19.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
191 |
+
"model.audio_encoder.encoder.layers.19.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
192 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
193 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
194 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
195 |
+
"model.audio_encoder.encoder.layers.19.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
196 |
+
"model.audio_encoder.encoder.layers.19.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
197 |
+
"model.audio_encoder.encoder.layers.19.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
198 |
+
"model.audio_encoder.encoder.layers.19.layer_norm.bias": "model-00001-of-00003.safetensors",
|
199 |
+
"model.audio_encoder.encoder.layers.19.layer_norm.weight": "model-00001-of-00003.safetensors",
|
200 |
+
"model.audio_encoder.encoder.layers.2.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
201 |
+
"model.audio_encoder.encoder.layers.2.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
202 |
+
"model.audio_encoder.encoder.layers.2.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
203 |
+
"model.audio_encoder.encoder.layers.2.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
204 |
+
"model.audio_encoder.encoder.layers.2.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
205 |
+
"model.audio_encoder.encoder.layers.2.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
206 |
+
"model.audio_encoder.encoder.layers.2.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
207 |
+
"model.audio_encoder.encoder.layers.2.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
208 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
209 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
210 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
211 |
+
"model.audio_encoder.encoder.layers.2.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
212 |
+
"model.audio_encoder.encoder.layers.2.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
213 |
+
"model.audio_encoder.encoder.layers.2.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
214 |
+
"model.audio_encoder.encoder.layers.2.layer_norm.bias": "model-00001-of-00003.safetensors",
|
215 |
+
"model.audio_encoder.encoder.layers.2.layer_norm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.audio_encoder.encoder.layers.20.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
217 |
+
"model.audio_encoder.encoder.layers.20.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.audio_encoder.encoder.layers.20.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
219 |
+
"model.audio_encoder.encoder.layers.20.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.audio_encoder.encoder.layers.20.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
221 |
+
"model.audio_encoder.encoder.layers.20.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.audio_encoder.encoder.layers.20.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
223 |
+
"model.audio_encoder.encoder.layers.20.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
225 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
226 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
227 |
+
"model.audio_encoder.encoder.layers.20.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
228 |
+
"model.audio_encoder.encoder.layers.20.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
229 |
+
"model.audio_encoder.encoder.layers.20.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
230 |
+
"model.audio_encoder.encoder.layers.20.layer_norm.bias": "model-00001-of-00003.safetensors",
|
231 |
+
"model.audio_encoder.encoder.layers.20.layer_norm.weight": "model-00001-of-00003.safetensors",
|
232 |
+
"model.audio_encoder.encoder.layers.21.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
233 |
+
"model.audio_encoder.encoder.layers.21.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
234 |
+
"model.audio_encoder.encoder.layers.21.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
235 |
+
"model.audio_encoder.encoder.layers.21.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
236 |
+
"model.audio_encoder.encoder.layers.21.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
237 |
+
"model.audio_encoder.encoder.layers.21.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
238 |
+
"model.audio_encoder.encoder.layers.21.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
239 |
+
"model.audio_encoder.encoder.layers.21.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
240 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
241 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
242 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
243 |
+
"model.audio_encoder.encoder.layers.21.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.audio_encoder.encoder.layers.21.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
245 |
+
"model.audio_encoder.encoder.layers.21.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.audio_encoder.encoder.layers.21.layer_norm.bias": "model-00001-of-00003.safetensors",
|
247 |
+
"model.audio_encoder.encoder.layers.21.layer_norm.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.audio_encoder.encoder.layers.22.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
249 |
+
"model.audio_encoder.encoder.layers.22.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.audio_encoder.encoder.layers.22.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
251 |
+
"model.audio_encoder.encoder.layers.22.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.audio_encoder.encoder.layers.22.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
253 |
+
"model.audio_encoder.encoder.layers.22.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.audio_encoder.encoder.layers.22.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
255 |
+
"model.audio_encoder.encoder.layers.22.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
257 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
259 |
+
"model.audio_encoder.encoder.layers.22.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.audio_encoder.encoder.layers.22.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
261 |
+
"model.audio_encoder.encoder.layers.22.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.audio_encoder.encoder.layers.22.layer_norm.bias": "model-00001-of-00003.safetensors",
|
263 |
+
"model.audio_encoder.encoder.layers.22.layer_norm.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.audio_encoder.encoder.layers.23.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
265 |
+
"model.audio_encoder.encoder.layers.23.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.audio_encoder.encoder.layers.23.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
267 |
+
"model.audio_encoder.encoder.layers.23.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.audio_encoder.encoder.layers.23.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
269 |
+
"model.audio_encoder.encoder.layers.23.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.audio_encoder.encoder.layers.23.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
271 |
+
"model.audio_encoder.encoder.layers.23.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
273 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
275 |
+
"model.audio_encoder.encoder.layers.23.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.audio_encoder.encoder.layers.23.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
277 |
+
"model.audio_encoder.encoder.layers.23.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.audio_encoder.encoder.layers.23.layer_norm.bias": "model-00001-of-00003.safetensors",
|
279 |
+
"model.audio_encoder.encoder.layers.23.layer_norm.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.audio_encoder.encoder.layers.3.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
281 |
+
"model.audio_encoder.encoder.layers.3.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.audio_encoder.encoder.layers.3.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
283 |
+
"model.audio_encoder.encoder.layers.3.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.audio_encoder.encoder.layers.3.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
285 |
+
"model.audio_encoder.encoder.layers.3.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.audio_encoder.encoder.layers.3.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
287 |
+
"model.audio_encoder.encoder.layers.3.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
289 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
291 |
+
"model.audio_encoder.encoder.layers.3.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.audio_encoder.encoder.layers.3.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
293 |
+
"model.audio_encoder.encoder.layers.3.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.audio_encoder.encoder.layers.3.layer_norm.bias": "model-00001-of-00003.safetensors",
|
295 |
+
"model.audio_encoder.encoder.layers.3.layer_norm.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.audio_encoder.encoder.layers.4.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
297 |
+
"model.audio_encoder.encoder.layers.4.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
298 |
+
"model.audio_encoder.encoder.layers.4.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
299 |
+
"model.audio_encoder.encoder.layers.4.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
300 |
+
"model.audio_encoder.encoder.layers.4.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
301 |
+
"model.audio_encoder.encoder.layers.4.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
302 |
+
"model.audio_encoder.encoder.layers.4.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
303 |
+
"model.audio_encoder.encoder.layers.4.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
304 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
305 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
306 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
307 |
+
"model.audio_encoder.encoder.layers.4.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
308 |
+
"model.audio_encoder.encoder.layers.4.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
309 |
+
"model.audio_encoder.encoder.layers.4.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
310 |
+
"model.audio_encoder.encoder.layers.4.layer_norm.bias": "model-00001-of-00003.safetensors",
|
311 |
+
"model.audio_encoder.encoder.layers.4.layer_norm.weight": "model-00001-of-00003.safetensors",
|
312 |
+
"model.audio_encoder.encoder.layers.5.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
313 |
+
"model.audio_encoder.encoder.layers.5.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
314 |
+
"model.audio_encoder.encoder.layers.5.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
315 |
+
"model.audio_encoder.encoder.layers.5.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
316 |
+
"model.audio_encoder.encoder.layers.5.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
317 |
+
"model.audio_encoder.encoder.layers.5.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
318 |
+
"model.audio_encoder.encoder.layers.5.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
319 |
+
"model.audio_encoder.encoder.layers.5.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
320 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
321 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
322 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
323 |
+
"model.audio_encoder.encoder.layers.5.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
324 |
+
"model.audio_encoder.encoder.layers.5.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
325 |
+
"model.audio_encoder.encoder.layers.5.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
326 |
+
"model.audio_encoder.encoder.layers.5.layer_norm.bias": "model-00001-of-00003.safetensors",
|
327 |
+
"model.audio_encoder.encoder.layers.5.layer_norm.weight": "model-00001-of-00003.safetensors",
|
328 |
+
"model.audio_encoder.encoder.layers.6.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
329 |
+
"model.audio_encoder.encoder.layers.6.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
330 |
+
"model.audio_encoder.encoder.layers.6.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
331 |
+
"model.audio_encoder.encoder.layers.6.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
332 |
+
"model.audio_encoder.encoder.layers.6.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
333 |
+
"model.audio_encoder.encoder.layers.6.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
334 |
+
"model.audio_encoder.encoder.layers.6.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
335 |
+
"model.audio_encoder.encoder.layers.6.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
336 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
337 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
338 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
339 |
+
"model.audio_encoder.encoder.layers.6.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
340 |
+
"model.audio_encoder.encoder.layers.6.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
341 |
+
"model.audio_encoder.encoder.layers.6.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
342 |
+
"model.audio_encoder.encoder.layers.6.layer_norm.bias": "model-00001-of-00003.safetensors",
|
343 |
+
"model.audio_encoder.encoder.layers.6.layer_norm.weight": "model-00001-of-00003.safetensors",
|
344 |
+
"model.audio_encoder.encoder.layers.7.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
345 |
+
"model.audio_encoder.encoder.layers.7.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
346 |
+
"model.audio_encoder.encoder.layers.7.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
347 |
+
"model.audio_encoder.encoder.layers.7.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
348 |
+
"model.audio_encoder.encoder.layers.7.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
349 |
+
"model.audio_encoder.encoder.layers.7.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
350 |
+
"model.audio_encoder.encoder.layers.7.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
351 |
+
"model.audio_encoder.encoder.layers.7.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
352 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
353 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
354 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
355 |
+
"model.audio_encoder.encoder.layers.7.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
356 |
+
"model.audio_encoder.encoder.layers.7.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
357 |
+
"model.audio_encoder.encoder.layers.7.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
358 |
+
"model.audio_encoder.encoder.layers.7.layer_norm.bias": "model-00001-of-00003.safetensors",
|
359 |
+
"model.audio_encoder.encoder.layers.7.layer_norm.weight": "model-00001-of-00003.safetensors",
|
360 |
+
"model.audio_encoder.encoder.layers.8.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
361 |
+
"model.audio_encoder.encoder.layers.8.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
362 |
+
"model.audio_encoder.encoder.layers.8.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
363 |
+
"model.audio_encoder.encoder.layers.8.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
364 |
+
"model.audio_encoder.encoder.layers.8.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
365 |
+
"model.audio_encoder.encoder.layers.8.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
366 |
+
"model.audio_encoder.encoder.layers.8.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
367 |
+
"model.audio_encoder.encoder.layers.8.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
368 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
369 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
370 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
371 |
+
"model.audio_encoder.encoder.layers.8.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
372 |
+
"model.audio_encoder.encoder.layers.8.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
373 |
+
"model.audio_encoder.encoder.layers.8.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
374 |
+
"model.audio_encoder.encoder.layers.8.layer_norm.bias": "model-00001-of-00003.safetensors",
|
375 |
+
"model.audio_encoder.encoder.layers.8.layer_norm.weight": "model-00001-of-00003.safetensors",
|
376 |
+
"model.audio_encoder.encoder.layers.9.attention.k_proj.bias": "model-00001-of-00003.safetensors",
|
377 |
+
"model.audio_encoder.encoder.layers.9.attention.k_proj.weight": "model-00001-of-00003.safetensors",
|
378 |
+
"model.audio_encoder.encoder.layers.9.attention.out_proj.bias": "model-00001-of-00003.safetensors",
|
379 |
+
"model.audio_encoder.encoder.layers.9.attention.out_proj.weight": "model-00001-of-00003.safetensors",
|
380 |
+
"model.audio_encoder.encoder.layers.9.attention.q_proj.bias": "model-00001-of-00003.safetensors",
|
381 |
+
"model.audio_encoder.encoder.layers.9.attention.q_proj.weight": "model-00001-of-00003.safetensors",
|
382 |
+
"model.audio_encoder.encoder.layers.9.attention.v_proj.bias": "model-00001-of-00003.safetensors",
|
383 |
+
"model.audio_encoder.encoder.layers.9.attention.v_proj.weight": "model-00001-of-00003.safetensors",
|
384 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
|
385 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
|
386 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
|
387 |
+
"model.audio_encoder.encoder.layers.9.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
|
388 |
+
"model.audio_encoder.encoder.layers.9.final_layer_norm.bias": "model-00001-of-00003.safetensors",
|
389 |
+
"model.audio_encoder.encoder.layers.9.final_layer_norm.weight": "model-00001-of-00003.safetensors",
|
390 |
+
"model.audio_encoder.encoder.layers.9.layer_norm.bias": "model-00001-of-00003.safetensors",
|
391 |
+
"model.audio_encoder.encoder.layers.9.layer_norm.weight": "model-00001-of-00003.safetensors",
|
392 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.bias": "model-00001-of-00003.safetensors",
|
393 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original0": "model-00001-of-00003.safetensors",
|
394 |
+
"model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original1": "model-00001-of-00003.safetensors",
|
395 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.conv.weight": "model-00001-of-00003.safetensors",
|
396 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
|
397 |
+
"model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
|
398 |
+
"model.audio_encoder.feature_extractor.conv_layers.1.conv.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"model.audio_encoder.feature_extractor.conv_layers.2.conv.weight": "model-00001-of-00003.safetensors",
|
400 |
+
"model.audio_encoder.feature_extractor.conv_layers.3.conv.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"model.audio_encoder.feature_extractor.conv_layers.4.conv.weight": "model-00001-of-00003.safetensors",
|
402 |
+
"model.audio_encoder.feature_extractor.conv_layers.5.conv.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"model.audio_encoder.feature_extractor.conv_layers.6.conv.weight": "model-00001-of-00003.safetensors",
|
404 |
+
"model.audio_encoder.feature_projection.layer_norm.bias": "model-00001-of-00003.safetensors",
|
405 |
+
"model.audio_encoder.feature_projection.layer_norm.weight": "model-00001-of-00003.safetensors",
|
406 |
+
"model.audio_encoder.feature_projection.projection.bias": "model-00001-of-00003.safetensors",
|
407 |
+
"model.audio_encoder.feature_projection.projection.weight": "model-00001-of-00003.safetensors",
|
408 |
+
"model.audio_encoder.masked_spec_embed": "model-00001-of-00003.safetensors",
|
409 |
+
"model.llama_model.lm_head.weight": "model-00003-of-00003.safetensors",
|
410 |
+
"model.llama_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"model.llama_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
412 |
+
"model.llama_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"model.llama_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
414 |
+
"model.llama_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"model.llama_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
416 |
+
"model.llama_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"model.llama_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
418 |
+
"model.llama_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"model.llama_model.model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
420 |
+
"model.llama_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
421 |
+
"model.llama_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
422 |
+
"model.llama_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"model.llama_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
424 |
+
"model.llama_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"model.llama_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
426 |
+
"model.llama_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"model.llama_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
428 |
+
"model.llama_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"model.llama_model.model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
430 |
+
"model.llama_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"model.llama_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
432 |
+
"model.llama_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
433 |
+
"model.llama_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
434 |
+
"model.llama_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
435 |
+
"model.llama_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
436 |
+
"model.llama_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
437 |
+
"model.llama_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
438 |
+
"model.llama_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
439 |
+
"model.llama_model.model.layers.10.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
440 |
+
"model.llama_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
441 |
+
"model.llama_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
442 |
+
"model.llama_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
443 |
+
"model.llama_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
444 |
+
"model.llama_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
445 |
+
"model.llama_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
446 |
+
"model.llama_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
447 |
+
"model.llama_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
448 |
+
"model.llama_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
449 |
+
"model.llama_model.model.layers.11.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
450 |
+
"model.llama_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
451 |
+
"model.llama_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
452 |
+
"model.llama_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
453 |
+
"model.llama_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
454 |
+
"model.llama_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
455 |
+
"model.llama_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
456 |
+
"model.llama_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
457 |
+
"model.llama_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
458 |
+
"model.llama_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
459 |
+
"model.llama_model.model.layers.12.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
460 |
+
"model.llama_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
461 |
+
"model.llama_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
462 |
+
"model.llama_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
463 |
+
"model.llama_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
464 |
+
"model.llama_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
465 |
+
"model.llama_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
466 |
+
"model.llama_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
467 |
+
"model.llama_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
468 |
+
"model.llama_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
469 |
+
"model.llama_model.model.layers.13.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
470 |
+
"model.llama_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
471 |
+
"model.llama_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
472 |
+
"model.llama_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
473 |
+
"model.llama_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
474 |
+
"model.llama_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
475 |
+
"model.llama_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
476 |
+
"model.llama_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
477 |
+
"model.llama_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
478 |
+
"model.llama_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
479 |
+
"model.llama_model.model.layers.14.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
480 |
+
"model.llama_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
481 |
+
"model.llama_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
482 |
+
"model.llama_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
483 |
+
"model.llama_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
484 |
+
"model.llama_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
485 |
+
"model.llama_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
486 |
+
"model.llama_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
487 |
+
"model.llama_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
488 |
+
"model.llama_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
489 |
+
"model.llama_model.model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
490 |
+
"model.llama_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
491 |
+
"model.llama_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
492 |
+
"model.llama_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
493 |
+
"model.llama_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
494 |
+
"model.llama_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
495 |
+
"model.llama_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
496 |
+
"model.llama_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
497 |
+
"model.llama_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
498 |
+
"model.llama_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
499 |
+
"model.llama_model.model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
500 |
+
"model.llama_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
501 |
+
"model.llama_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
502 |
+
"model.llama_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
503 |
+
"model.llama_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
504 |
+
"model.llama_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
505 |
+
"model.llama_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
506 |
+
"model.llama_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
507 |
+
"model.llama_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
508 |
+
"model.llama_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
509 |
+
"model.llama_model.model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
510 |
+
"model.llama_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
511 |
+
"model.llama_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
512 |
+
"model.llama_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
513 |
+
"model.llama_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
514 |
+
"model.llama_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
515 |
+
"model.llama_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
516 |
+
"model.llama_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
517 |
+
"model.llama_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
518 |
+
"model.llama_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
519 |
+
"model.llama_model.model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
520 |
+
"model.llama_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
521 |
+
"model.llama_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
522 |
+
"model.llama_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
523 |
+
"model.llama_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
524 |
+
"model.llama_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
525 |
+
"model.llama_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
526 |
+
"model.llama_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
527 |
+
"model.llama_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
528 |
+
"model.llama_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
529 |
+
"model.llama_model.model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
530 |
+
"model.llama_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
531 |
+
"model.llama_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
532 |
+
"model.llama_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
533 |
+
"model.llama_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
534 |
+
"model.llama_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"model.llama_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
536 |
+
"model.llama_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
537 |
+
"model.llama_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
538 |
+
"model.llama_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
539 |
+
"model.llama_model.model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
540 |
+
"model.llama_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"model.llama_model.model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
542 |
+
"model.llama_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
543 |
+
"model.llama_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
544 |
+
"model.llama_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
545 |
+
"model.llama_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
546 |
+
"model.llama_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
547 |
+
"model.llama_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
548 |
+
"model.llama_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
549 |
+
"model.llama_model.model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
550 |
+
"model.llama_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
551 |
+
"model.llama_model.model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
552 |
+
"model.llama_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
553 |
+
"model.llama_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
554 |
+
"model.llama_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
555 |
+
"model.llama_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
556 |
+
"model.llama_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
557 |
+
"model.llama_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
558 |
+
"model.llama_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
559 |
+
"model.llama_model.model.layers.21.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
560 |
+
"model.llama_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
561 |
+
"model.llama_model.model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
562 |
+
"model.llama_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
563 |
+
"model.llama_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
564 |
+
"model.llama_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
565 |
+
"model.llama_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
566 |
+
"model.llama_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
567 |
+
"model.llama_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
568 |
+
"model.llama_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
569 |
+
"model.llama_model.model.layers.22.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
570 |
+
"model.llama_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
571 |
+
"model.llama_model.model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
572 |
+
"model.llama_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
573 |
+
"model.llama_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
574 |
+
"model.llama_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
575 |
+
"model.llama_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
576 |
+
"model.llama_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
577 |
+
"model.llama_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
578 |
+
"model.llama_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
579 |
+
"model.llama_model.model.layers.23.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
580 |
+
"model.llama_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
581 |
+
"model.llama_model.model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
582 |
+
"model.llama_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
583 |
+
"model.llama_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
584 |
+
"model.llama_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
585 |
+
"model.llama_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
586 |
+
"model.llama_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
587 |
+
"model.llama_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
588 |
+
"model.llama_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
589 |
+
"model.llama_model.model.layers.24.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
590 |
+
"model.llama_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
591 |
+
"model.llama_model.model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
592 |
+
"model.llama_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
593 |
+
"model.llama_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
594 |
+
"model.llama_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
595 |
+
"model.llama_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
596 |
+
"model.llama_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
597 |
+
"model.llama_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
598 |
+
"model.llama_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
599 |
+
"model.llama_model.model.layers.25.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
600 |
+
"model.llama_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
601 |
+
"model.llama_model.model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
602 |
+
"model.llama_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
603 |
+
"model.llama_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
604 |
+
"model.llama_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
605 |
+
"model.llama_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
606 |
+
"model.llama_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
607 |
+
"model.llama_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
608 |
+
"model.llama_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
609 |
+
"model.llama_model.model.layers.26.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
610 |
+
"model.llama_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
611 |
+
"model.llama_model.model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
612 |
+
"model.llama_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
613 |
+
"model.llama_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
614 |
+
"model.llama_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
615 |
+
"model.llama_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
616 |
+
"model.llama_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
617 |
+
"model.llama_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
618 |
+
"model.llama_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
619 |
+
"model.llama_model.model.layers.27.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
620 |
+
"model.llama_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
621 |
+
"model.llama_model.model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
622 |
+
"model.llama_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
623 |
+
"model.llama_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
624 |
+
"model.llama_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
625 |
+
"model.llama_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
626 |
+
"model.llama_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
627 |
+
"model.llama_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
628 |
+
"model.llama_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
629 |
+
"model.llama_model.model.layers.28.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
630 |
+
"model.llama_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
631 |
+
"model.llama_model.model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
632 |
+
"model.llama_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
633 |
+
"model.llama_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
634 |
+
"model.llama_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
635 |
+
"model.llama_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
636 |
+
"model.llama_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
637 |
+
"model.llama_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
638 |
+
"model.llama_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
639 |
+
"model.llama_model.model.layers.29.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
640 |
+
"model.llama_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
641 |
+
"model.llama_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
642 |
+
"model.llama_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
643 |
+
"model.llama_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
644 |
+
"model.llama_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
645 |
+
"model.llama_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
646 |
+
"model.llama_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
647 |
+
"model.llama_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
648 |
+
"model.llama_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
649 |
+
"model.llama_model.model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
650 |
+
"model.llama_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
651 |
+
"model.llama_model.model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
652 |
+
"model.llama_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
653 |
+
"model.llama_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
654 |
+
"model.llama_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
655 |
+
"model.llama_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
656 |
+
"model.llama_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
657 |
+
"model.llama_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
658 |
+
"model.llama_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
659 |
+
"model.llama_model.model.layers.30.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
660 |
+
"model.llama_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
661 |
+
"model.llama_model.model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
662 |
+
"model.llama_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
663 |
+
"model.llama_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
664 |
+
"model.llama_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
665 |
+
"model.llama_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
666 |
+
"model.llama_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
667 |
+
"model.llama_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
668 |
+
"model.llama_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
669 |
+
"model.llama_model.model.layers.31.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
670 |
+
"model.llama_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
671 |
+
"model.llama_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
672 |
+
"model.llama_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
673 |
+
"model.llama_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
674 |
+
"model.llama_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
675 |
+
"model.llama_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
676 |
+
"model.llama_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
677 |
+
"model.llama_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
678 |
+
"model.llama_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
679 |
+
"model.llama_model.model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
680 |
+
"model.llama_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
681 |
+
"model.llama_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
682 |
+
"model.llama_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
683 |
+
"model.llama_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
684 |
+
"model.llama_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
685 |
+
"model.llama_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
686 |
+
"model.llama_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
687 |
+
"model.llama_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
688 |
+
"model.llama_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
689 |
+
"model.llama_model.model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
690 |
+
"model.llama_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
691 |
+
"model.llama_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
692 |
+
"model.llama_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
693 |
+
"model.llama_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
694 |
+
"model.llama_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
695 |
+
"model.llama_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
696 |
+
"model.llama_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
697 |
+
"model.llama_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
698 |
+
"model.llama_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
699 |
+
"model.llama_model.model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
700 |
+
"model.llama_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
701 |
+
"model.llama_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
702 |
+
"model.llama_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
703 |
+
"model.llama_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
704 |
+
"model.llama_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
705 |
+
"model.llama_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
706 |
+
"model.llama_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
707 |
+
"model.llama_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
708 |
+
"model.llama_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
709 |
+
"model.llama_model.model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
710 |
+
"model.llama_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
711 |
+
"model.llama_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
712 |
+
"model.llama_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
713 |
+
"model.llama_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
714 |
+
"model.llama_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
715 |
+
"model.llama_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
716 |
+
"model.llama_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
717 |
+
"model.llama_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
718 |
+
"model.llama_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
719 |
+
"model.llama_model.model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
720 |
+
"model.llama_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
721 |
+
"model.llama_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
722 |
+
"model.llama_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
723 |
+
"model.llama_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
724 |
+
"model.llama_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
725 |
+
"model.llama_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
726 |
+
"model.llama_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
727 |
+
"model.llama_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
728 |
+
"model.llama_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
729 |
+
"model.llama_model.model.layers.9.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
730 |
+
"model.llama_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
731 |
+
"model.llama_model.model.norm.weight": "model-00003-of-00003.safetensors",
|
732 |
+
"model.llama_proj.bias": "model-00003-of-00003.safetensors",
|
733 |
+
"model.llama_proj.weight": "model-00003-of-00003.safetensors"
|
734 |
+
}
|
735 |
+
}
|
modelling_musilingo.py
ADDED
@@ -0,0 +1,1509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import math
|
5 |
+
import re
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
from torch.cuda.amp import autocast as autocast
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import Wav2Vec2FeatureExtractor
|
15 |
+
from omegaconf import OmegaConf
|
16 |
+
|
17 |
+
from musilingo_huggingface.configuration_musilingo import MusiLingoConfig, PATH
|
18 |
+
import timm.models.hub as timm_hub
|
19 |
+
|
20 |
+
|
21 |
+
from transformers import LlamaTokenizer, Wav2Vec2FeatureExtractor, AutoModel
|
22 |
+
from transformers.activations import ACT2FN
|
23 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
24 |
+
from transformers.modeling_utils import PreTrainedModel
|
25 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
26 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
27 |
+
from transformers import PreTrainedModel
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
class Registry:
|
32 |
+
mapping = {
|
33 |
+
"builder_name_mapping": {},
|
34 |
+
"task_name_mapping": {},
|
35 |
+
"processor_name_mapping": {},
|
36 |
+
"model_name_mapping": {},
|
37 |
+
"lr_scheduler_name_mapping": {},
|
38 |
+
"runner_name_mapping": {},
|
39 |
+
"state": {},
|
40 |
+
"paths": {},
|
41 |
+
}
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def register_builder(cls, name):
|
45 |
+
r"""Register a dataset builder to registry with key 'name'
|
46 |
+
|
47 |
+
Args:
|
48 |
+
name: Key with which the builder will be registered.
|
49 |
+
|
50 |
+
Usage:
|
51 |
+
|
52 |
+
from lavi.common.registry import registry
|
53 |
+
from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
|
54 |
+
"""
|
55 |
+
|
56 |
+
def wrap(builder_cls):
|
57 |
+
from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
58 |
+
|
59 |
+
assert issubclass(
|
60 |
+
builder_cls, BaseDatasetBuilder
|
61 |
+
), "All builders must inherit BaseDatasetBuilder class, found {}".format(
|
62 |
+
builder_cls
|
63 |
+
)
|
64 |
+
if name in cls.mapping["builder_name_mapping"]:
|
65 |
+
raise KeyError(
|
66 |
+
"Name '{}' already registered for {}.".format(
|
67 |
+
name, cls.mapping["builder_name_mapping"][name]
|
68 |
+
)
|
69 |
+
)
|
70 |
+
cls.mapping["builder_name_mapping"][name] = builder_cls
|
71 |
+
return builder_cls
|
72 |
+
|
73 |
+
return wrap
|
74 |
+
|
75 |
+
@classmethod
|
76 |
+
def register_task(cls, name):
|
77 |
+
r"""Register a task to registry with key 'name'
|
78 |
+
|
79 |
+
Args:
|
80 |
+
name: Key with which the task will be registered.
|
81 |
+
|
82 |
+
Usage:
|
83 |
+
|
84 |
+
from lavi.common.registry import registry
|
85 |
+
"""
|
86 |
+
|
87 |
+
def wrap(task_cls):
|
88 |
+
from musilingo.tasks.base_task import BaseTask
|
89 |
+
|
90 |
+
assert issubclass(
|
91 |
+
task_cls, BaseTask
|
92 |
+
), "All tasks must inherit BaseTask class"
|
93 |
+
if name in cls.mapping["task_name_mapping"]:
|
94 |
+
raise KeyError(
|
95 |
+
"Name '{}' already registered for {}.".format(
|
96 |
+
name, cls.mapping["task_name_mapping"][name]
|
97 |
+
)
|
98 |
+
)
|
99 |
+
cls.mapping["task_name_mapping"][name] = task_cls
|
100 |
+
return task_cls
|
101 |
+
|
102 |
+
return wrap
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def register_model(cls, name):
|
106 |
+
r"""Register a task to registry with key 'name'
|
107 |
+
|
108 |
+
Args:
|
109 |
+
name: Key with which the task will be registered.
|
110 |
+
|
111 |
+
Usage:
|
112 |
+
|
113 |
+
from lavi.common.registry import registry
|
114 |
+
"""
|
115 |
+
|
116 |
+
def wrap(model_cls):
|
117 |
+
|
118 |
+
assert issubclass(
|
119 |
+
model_cls, BaseModel
|
120 |
+
), "All models must inherit BaseModel class"
|
121 |
+
if name in cls.mapping["model_name_mapping"]:
|
122 |
+
raise KeyError(
|
123 |
+
"Name '{}' already registered for {}.".format(
|
124 |
+
name, cls.mapping["model_name_mapping"][name]
|
125 |
+
)
|
126 |
+
)
|
127 |
+
cls.mapping["model_name_mapping"][name] = model_cls
|
128 |
+
return model_cls
|
129 |
+
|
130 |
+
return wrap
|
131 |
+
|
132 |
+
@classmethod
|
133 |
+
def register_processor(cls, name):
|
134 |
+
r"""Register a processor to registry with key 'name'
|
135 |
+
|
136 |
+
Args:
|
137 |
+
name: Key with which the task will be registered.
|
138 |
+
|
139 |
+
Usage:
|
140 |
+
|
141 |
+
from lavi.common.registry import registry
|
142 |
+
"""
|
143 |
+
|
144 |
+
def wrap(processor_cls):
|
145 |
+
from musilingo.processors import BaseProcessor
|
146 |
+
|
147 |
+
assert issubclass(
|
148 |
+
processor_cls, BaseProcessor
|
149 |
+
), "All processors must inherit BaseProcessor class"
|
150 |
+
if name in cls.mapping["processor_name_mapping"]:
|
151 |
+
raise KeyError(
|
152 |
+
"Name '{}' already registered for {}.".format(
|
153 |
+
name, cls.mapping["processor_name_mapping"][name]
|
154 |
+
)
|
155 |
+
)
|
156 |
+
cls.mapping["processor_name_mapping"][name] = processor_cls
|
157 |
+
return processor_cls
|
158 |
+
|
159 |
+
return wrap
|
160 |
+
|
161 |
+
@classmethod
|
162 |
+
def register_lr_scheduler(cls, name):
|
163 |
+
r"""Register a model to registry with key 'name'
|
164 |
+
|
165 |
+
Args:
|
166 |
+
name: Key with which the task will be registered.
|
167 |
+
|
168 |
+
Usage:
|
169 |
+
|
170 |
+
from minigpt4.common.registry import registry
|
171 |
+
"""
|
172 |
+
|
173 |
+
def wrap(lr_sched_cls):
|
174 |
+
if name in cls.mapping["lr_scheduler_name_mapping"]:
|
175 |
+
raise KeyError(
|
176 |
+
"Name '{}' already registered for {}.".format(
|
177 |
+
name, cls.mapping["lr_scheduler_name_mapping"][name]
|
178 |
+
)
|
179 |
+
)
|
180 |
+
cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
|
181 |
+
return lr_sched_cls
|
182 |
+
|
183 |
+
return wrap
|
184 |
+
|
185 |
+
@classmethod
|
186 |
+
def register_runner(cls, name):
|
187 |
+
r"""Register a model to registry with key 'name'
|
188 |
+
|
189 |
+
Args:
|
190 |
+
name: Key with which the task will be registered.
|
191 |
+
|
192 |
+
Usage:
|
193 |
+
|
194 |
+
from minigpt4.common.registry import registry
|
195 |
+
"""
|
196 |
+
|
197 |
+
def wrap(runner_cls):
|
198 |
+
if name in cls.mapping["runner_name_mapping"]:
|
199 |
+
raise KeyError(
|
200 |
+
"Name '{}' already registered for {}.".format(
|
201 |
+
name, cls.mapping["runner_name_mapping"][name]
|
202 |
+
)
|
203 |
+
)
|
204 |
+
cls.mapping["runner_name_mapping"][name] = runner_cls
|
205 |
+
return runner_cls
|
206 |
+
|
207 |
+
return wrap
|
208 |
+
|
209 |
+
@classmethod
|
210 |
+
def register_path(cls, name, path):
|
211 |
+
r"""Register a path to registry with key 'name'
|
212 |
+
|
213 |
+
Args:
|
214 |
+
name: Key with which the path will be registered.
|
215 |
+
|
216 |
+
Usage:
|
217 |
+
|
218 |
+
from minigpt4.common.registry import registry
|
219 |
+
"""
|
220 |
+
assert isinstance(path, str), "All path must be str."
|
221 |
+
if name in cls.mapping["paths"]:
|
222 |
+
raise KeyError("Name '{}' already registered.".format(name))
|
223 |
+
cls.mapping["paths"][name] = path
|
224 |
+
|
225 |
+
@classmethod
|
226 |
+
def register(cls, name, obj):
|
227 |
+
r"""Register an item to registry with key 'name'
|
228 |
+
|
229 |
+
Args:
|
230 |
+
name: Key with which the item will be registered.
|
231 |
+
|
232 |
+
Usage::
|
233 |
+
|
234 |
+
from minigpt4.common.registry import registry
|
235 |
+
|
236 |
+
registry.register("config", {})
|
237 |
+
"""
|
238 |
+
path = name.split(".")
|
239 |
+
current = cls.mapping["state"]
|
240 |
+
|
241 |
+
for part in path[:-1]:
|
242 |
+
if part not in current:
|
243 |
+
current[part] = {}
|
244 |
+
current = current[part]
|
245 |
+
|
246 |
+
current[path[-1]] = obj
|
247 |
+
|
248 |
+
# @classmethod
|
249 |
+
# def get_trainer_class(cls, name):
|
250 |
+
# return cls.mapping["trainer_name_mapping"].get(name, None)
|
251 |
+
|
252 |
+
@classmethod
|
253 |
+
def get_builder_class(cls, name):
|
254 |
+
return cls.mapping["builder_name_mapping"].get(name, None)
|
255 |
+
|
256 |
+
@classmethod
|
257 |
+
def get_model_class(cls, name):
|
258 |
+
return cls.mapping["model_name_mapping"].get(name, None)
|
259 |
+
|
260 |
+
@classmethod
|
261 |
+
def get_task_class(cls, name):
|
262 |
+
return cls.mapping["task_name_mapping"].get(name, None)
|
263 |
+
|
264 |
+
@classmethod
|
265 |
+
def get_processor_class(cls, name):
|
266 |
+
return cls.mapping["processor_name_mapping"].get(name, None)
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def get_lr_scheduler_class(cls, name):
|
270 |
+
return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
|
271 |
+
|
272 |
+
@classmethod
|
273 |
+
def get_runner_class(cls, name):
|
274 |
+
return cls.mapping["runner_name_mapping"].get(name, None)
|
275 |
+
|
276 |
+
@classmethod
|
277 |
+
def list_runners(cls):
|
278 |
+
return sorted(cls.mapping["runner_name_mapping"].keys())
|
279 |
+
|
280 |
+
@classmethod
|
281 |
+
def list_models(cls):
|
282 |
+
return sorted(cls.mapping["model_name_mapping"].keys())
|
283 |
+
|
284 |
+
@classmethod
|
285 |
+
def list_tasks(cls):
|
286 |
+
return sorted(cls.mapping["task_name_mapping"].keys())
|
287 |
+
|
288 |
+
@classmethod
|
289 |
+
def list_processors(cls):
|
290 |
+
return sorted(cls.mapping["processor_name_mapping"].keys())
|
291 |
+
|
292 |
+
@classmethod
|
293 |
+
def list_lr_schedulers(cls):
|
294 |
+
return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def list_datasets(cls):
|
298 |
+
return sorted(cls.mapping["builder_name_mapping"].keys())
|
299 |
+
|
300 |
+
@classmethod
|
301 |
+
def get_path(cls, name):
|
302 |
+
return cls.mapping["paths"].get(name, None)
|
303 |
+
|
304 |
+
@classmethod
|
305 |
+
def get(cls, name, default=None, no_warning=False):
|
306 |
+
r"""Get an item from registry with key 'name'
|
307 |
+
|
308 |
+
Args:
|
309 |
+
name (string): Key whose value needs to be retrieved.
|
310 |
+
default: If passed and key is not in registry, default value will
|
311 |
+
be returned with a warning. Default: None
|
312 |
+
no_warning (bool): If passed as True, warning when key doesn't exist
|
313 |
+
will not be generated. Useful for MMF's
|
314 |
+
internal operations. Default: False
|
315 |
+
"""
|
316 |
+
original_name = name
|
317 |
+
name = name.split(".")
|
318 |
+
value = cls.mapping["state"]
|
319 |
+
for subname in name:
|
320 |
+
value = value.get(subname, default)
|
321 |
+
if value is default:
|
322 |
+
break
|
323 |
+
|
324 |
+
if (
|
325 |
+
"writer" in cls.mapping["state"]
|
326 |
+
and value == default
|
327 |
+
and no_warning is False
|
328 |
+
):
|
329 |
+
cls.mapping["state"]["writer"].warning(
|
330 |
+
"Key {} is not present in registry, returning default value "
|
331 |
+
"of {}".format(original_name, default)
|
332 |
+
)
|
333 |
+
return value
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def unregister(cls, name):
|
337 |
+
r"""Remove an item from registry with key 'name'
|
338 |
+
|
339 |
+
Args:
|
340 |
+
name: Key which needs to be removed.
|
341 |
+
Usage::
|
342 |
+
|
343 |
+
from mmf.common.registry import registry
|
344 |
+
|
345 |
+
config = registry.unregister("config")
|
346 |
+
"""
|
347 |
+
return cls.mapping["state"].pop(name, None)
|
348 |
+
|
349 |
+
|
350 |
+
registry = Registry()
|
351 |
+
|
352 |
+
|
353 |
+
def get_abs_path(rel_path):
|
354 |
+
return os.path.join(registry.get_path("library_root"), rel_path)
|
355 |
+
|
356 |
+
def is_url(input_url):
|
357 |
+
"""
|
358 |
+
Check if an input string is a url. look for http(s):// and ignoring the case
|
359 |
+
"""
|
360 |
+
is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
|
361 |
+
return is_url
|
362 |
+
|
363 |
+
|
364 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
365 |
+
"""
|
366 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
367 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
368 |
+
"""
|
369 |
+
|
370 |
+
def get_cached_file_path():
|
371 |
+
# a hack to sync the file path across processes
|
372 |
+
parts = torch.hub.urlparse(url)
|
373 |
+
filename = os.path.basename(parts.path)
|
374 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
375 |
+
|
376 |
+
return cached_file
|
377 |
+
|
378 |
+
if is_main_process():
|
379 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
380 |
+
|
381 |
+
if is_dist_avail_and_initialized():
|
382 |
+
dist.barrier()
|
383 |
+
|
384 |
+
return get_cached_file_path()
|
385 |
+
|
386 |
+
def is_dist_avail_and_initialized():
|
387 |
+
if not dist.is_available():
|
388 |
+
return False
|
389 |
+
if not dist.is_initialized():
|
390 |
+
return False
|
391 |
+
return True
|
392 |
+
|
393 |
+
def is_main_process():
|
394 |
+
return get_rank() == 0
|
395 |
+
|
396 |
+
def get_rank():
|
397 |
+
if not is_dist_avail_and_initialized():
|
398 |
+
return 0
|
399 |
+
return dist.get_rank()
|
400 |
+
|
401 |
+
class BaseModel(nn.Module):
|
402 |
+
"""Base class for models."""
|
403 |
+
|
404 |
+
def __init__(self):
|
405 |
+
super().__init__()
|
406 |
+
|
407 |
+
@property
|
408 |
+
def device(self):
|
409 |
+
return list(self.parameters())[0].device
|
410 |
+
|
411 |
+
def load_checkpoint(self, url_or_filename):
|
412 |
+
"""
|
413 |
+
Load from a finetuned checkpoint.
|
414 |
+
|
415 |
+
This should expect no mismatch in the model keys and the checkpoint keys.
|
416 |
+
"""
|
417 |
+
|
418 |
+
if is_url(url_or_filename):
|
419 |
+
cached_file = download_cached_file(
|
420 |
+
url_or_filename, check_hash=False, progress=True
|
421 |
+
)
|
422 |
+
checkpoint = torch.load(cached_file, map_location="cpu")
|
423 |
+
elif os.path.isfile(url_or_filename):
|
424 |
+
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
425 |
+
else:
|
426 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
427 |
+
|
428 |
+
if "model" in checkpoint.keys():
|
429 |
+
state_dict = checkpoint["model"]
|
430 |
+
else:
|
431 |
+
state_dict = checkpoint
|
432 |
+
|
433 |
+
msg = self.load_state_dict(state_dict, strict=False)
|
434 |
+
|
435 |
+
logging.info("Missing keys {}".format(msg.missing_keys))
|
436 |
+
logging.info("load checkpoint from %s" % url_or_filename)
|
437 |
+
|
438 |
+
return msg
|
439 |
+
|
440 |
+
@classmethod
|
441 |
+
def from_pretrained(cls, model_type):
|
442 |
+
"""
|
443 |
+
Build a pretrained model from default configuration file, specified by model_type.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
- model_type (str): model type, specifying architecture and checkpoints.
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
- model (nn.Module): pretrained or finetuned model, depending on the configuration.
|
450 |
+
"""
|
451 |
+
model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
|
452 |
+
model = cls.from_config(model_cfg)
|
453 |
+
|
454 |
+
return model
|
455 |
+
|
456 |
+
@classmethod
|
457 |
+
def default_config_path(cls, model_type):
|
458 |
+
assert (
|
459 |
+
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
|
460 |
+
), "Unknown model type {}".format(model_type)
|
461 |
+
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
|
462 |
+
|
463 |
+
def load_checkpoint_from_config(self, cfg, **kwargs):
|
464 |
+
"""
|
465 |
+
Load checkpoint as specified in the config file.
|
466 |
+
|
467 |
+
If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
|
468 |
+
When loading the pretrained model, each task-specific architecture may define their
|
469 |
+
own load_from_pretrained() method.
|
470 |
+
"""
|
471 |
+
load_finetuned = cfg.get("load_finetuned", True)
|
472 |
+
if load_finetuned:
|
473 |
+
finetune_path = cfg.get("finetuned", None)
|
474 |
+
assert (
|
475 |
+
finetune_path is not None
|
476 |
+
), "Found load_finetuned is True, but finetune_path is None."
|
477 |
+
self.load_checkpoint(url_or_filename=finetune_path)
|
478 |
+
else:
|
479 |
+
# load pre-trained weights
|
480 |
+
pretrain_path = cfg.get("pretrained", None)
|
481 |
+
assert "Found load_finetuned is False, but pretrain_path is None."
|
482 |
+
self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
|
483 |
+
|
484 |
+
def before_evaluation(self, **kwargs):
|
485 |
+
pass
|
486 |
+
|
487 |
+
def show_n_params(self, return_str=True):
|
488 |
+
tot = 0
|
489 |
+
for p in self.parameters():
|
490 |
+
w = 1
|
491 |
+
for x in p.shape:
|
492 |
+
w *= x
|
493 |
+
tot += w
|
494 |
+
if return_str:
|
495 |
+
if tot >= 1e6:
|
496 |
+
return "{:.1f}M".format(tot / 1e6)
|
497 |
+
else:
|
498 |
+
return "{:.1f}K".format(tot / 1e3)
|
499 |
+
else:
|
500 |
+
return tot
|
501 |
+
|
502 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
503 |
+
Args:
|
504 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
505 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
506 |
+
it.
|
507 |
+
|
508 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
509 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
510 |
+
|
511 |
+
[What are input IDs?](../glossary#input-ids)
|
512 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
513 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
514 |
+
|
515 |
+
- 1 for tokens that are **not masked**,
|
516 |
+
- 0 for tokens that are **masked**.
|
517 |
+
|
518 |
+
[What are attention masks?](../glossary#attention-mask)
|
519 |
+
|
520 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
521 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
522 |
+
|
523 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
524 |
+
`past_key_values`).
|
525 |
+
|
526 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
527 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
528 |
+
information on the default strategy.
|
529 |
+
|
530 |
+
- 1 indicates the head is **not masked**,
|
531 |
+
- 0 indicates the head is **masked**.
|
532 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
533 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
534 |
+
config.n_positions - 1]`.
|
535 |
+
|
536 |
+
[What are position IDs?](../glossary#position-ids)
|
537 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
538 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
539 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
540 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
541 |
+
|
542 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
543 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
544 |
+
|
545 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
546 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
547 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
548 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
549 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
550 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
551 |
+
model's internal embedding lookup matrix.
|
552 |
+
use_cache (`bool`, *optional*):
|
553 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
554 |
+
`past_key_values`).
|
555 |
+
output_attentions (`bool`, *optional*):
|
556 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
557 |
+
tensors for more detail.
|
558 |
+
output_hidden_states (`bool`, *optional*):
|
559 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
560 |
+
more detail.
|
561 |
+
return_dict (`bool`, *optional*):
|
562 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
563 |
+
"""
|
564 |
+
|
565 |
+
|
566 |
+
LLAMA_START_DOCSTRING = r"""
|
567 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
568 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
569 |
+
etc.)
|
570 |
+
|
571 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
572 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
573 |
+
and behavior.
|
574 |
+
|
575 |
+
Parameters:
|
576 |
+
config ([`LlamaConfig`]):
|
577 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
578 |
+
load the weights associated with the model, only the configuration. Check out the
|
579 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
580 |
+
"""
|
581 |
+
|
582 |
+
|
583 |
+
logger = logging.get_logger(__name__)
|
584 |
+
|
585 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
586 |
+
|
587 |
+
|
588 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
589 |
+
def _make_causal_mask(
|
590 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
591 |
+
):
|
592 |
+
"""
|
593 |
+
Make causal mask used for bi-directional self-attention.
|
594 |
+
"""
|
595 |
+
bsz, tgt_len = input_ids_shape
|
596 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
597 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
598 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
599 |
+
mask = mask.to(dtype)
|
600 |
+
|
601 |
+
if past_key_values_length > 0:
|
602 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
603 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
604 |
+
|
605 |
+
|
606 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
607 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
608 |
+
"""
|
609 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
610 |
+
"""
|
611 |
+
bsz, src_len = mask.size()
|
612 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
613 |
+
|
614 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
615 |
+
|
616 |
+
inverted_mask = 1.0 - expanded_mask
|
617 |
+
|
618 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
619 |
+
|
620 |
+
|
621 |
+
class LlamaRMSNorm(nn.Module):
|
622 |
+
def __init__(self, hidden_size, eps=1e-6):
|
623 |
+
"""
|
624 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
625 |
+
"""
|
626 |
+
super().__init__()
|
627 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
628 |
+
self.variance_epsilon = eps
|
629 |
+
|
630 |
+
def forward(self, hidden_states):
|
631 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
632 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
633 |
+
|
634 |
+
# convert into half-precision if necessary
|
635 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
636 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
637 |
+
|
638 |
+
return self.weight * hidden_states
|
639 |
+
|
640 |
+
|
641 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
642 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
643 |
+
super().__init__()
|
644 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
645 |
+
self.register_buffer("inv_freq", inv_freq)
|
646 |
+
|
647 |
+
# Build here to make `torch.jit.trace` work.
|
648 |
+
self.max_seq_len_cached = max_position_embeddings
|
649 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
650 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
651 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
652 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
653 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
654 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
655 |
+
|
656 |
+
def forward(self, x, seq_len=None):
|
657 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
658 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
659 |
+
if seq_len > self.max_seq_len_cached:
|
660 |
+
self.max_seq_len_cached = seq_len
|
661 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
662 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
663 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
664 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
665 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
666 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
667 |
+
return (
|
668 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
669 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
670 |
+
)
|
671 |
+
|
672 |
+
|
673 |
+
def rotate_half(x):
|
674 |
+
"""Rotates half the hidden dims of the input."""
|
675 |
+
x1 = x[..., : x.shape[-1] // 2]
|
676 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
677 |
+
return torch.cat((-x2, x1), dim=-1)
|
678 |
+
|
679 |
+
|
680 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
681 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
682 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
683 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
684 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
685 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
686 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
687 |
+
return q_embed, k_embed
|
688 |
+
|
689 |
+
|
690 |
+
|
691 |
+
|
692 |
+
class LlamaMLP(nn.Module):
|
693 |
+
def __init__(
|
694 |
+
self,
|
695 |
+
hidden_size: int,
|
696 |
+
intermediate_size: int,
|
697 |
+
hidden_act: str,
|
698 |
+
):
|
699 |
+
super().__init__()
|
700 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
701 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
702 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
703 |
+
self.act_fn = ACT2FN[hidden_act]
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
707 |
+
|
708 |
+
|
709 |
+
class LlamaAttention(nn.Module):
|
710 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
711 |
+
|
712 |
+
def __init__(self, config: LlamaConfig):
|
713 |
+
super().__init__()
|
714 |
+
self.config = config
|
715 |
+
self.hidden_size = config.hidden_size
|
716 |
+
self.num_heads = config.num_attention_heads
|
717 |
+
self.head_dim = self.hidden_size // self.num_heads
|
718 |
+
self.max_position_embeddings = config.max_position_embeddings
|
719 |
+
|
720 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
721 |
+
raise ValueError(
|
722 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
723 |
+
f" and `num_heads`: {self.num_heads})."
|
724 |
+
)
|
725 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
726 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
727 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
728 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
729 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
730 |
+
|
731 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
732 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
733 |
+
|
734 |
+
def forward(
|
735 |
+
self,
|
736 |
+
hidden_states: torch.Tensor,
|
737 |
+
attention_mask: Optional[torch.Tensor] = None,
|
738 |
+
position_ids: Optional[torch.LongTensor] = None,
|
739 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
740 |
+
output_attentions: bool = False,
|
741 |
+
use_cache: bool = False,
|
742 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
743 |
+
bsz, q_len, _ = hidden_states.size()
|
744 |
+
|
745 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
746 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
747 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
748 |
+
|
749 |
+
kv_seq_len = key_states.shape[-2]
|
750 |
+
if past_key_value is not None:
|
751 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
752 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
753 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
754 |
+
# [bsz, nh, t, hd]
|
755 |
+
|
756 |
+
if past_key_value is not None:
|
757 |
+
# reuse k, v, self_attention
|
758 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
759 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
760 |
+
|
761 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
762 |
+
|
763 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
764 |
+
|
765 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
766 |
+
raise ValueError(
|
767 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
768 |
+
f" {attn_weights.size()}"
|
769 |
+
)
|
770 |
+
|
771 |
+
if attention_mask is not None:
|
772 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
773 |
+
raise ValueError(
|
774 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
775 |
+
)
|
776 |
+
attn_weights = attn_weights + attention_mask
|
777 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
778 |
+
|
779 |
+
# upcast attention to fp32
|
780 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
781 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
782 |
+
|
783 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
784 |
+
raise ValueError(
|
785 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
786 |
+
f" {attn_output.size()}"
|
787 |
+
)
|
788 |
+
|
789 |
+
attn_output = attn_output.transpose(1, 2)
|
790 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
791 |
+
|
792 |
+
attn_output = self.o_proj(attn_output)
|
793 |
+
|
794 |
+
if not output_attentions:
|
795 |
+
attn_weights = None
|
796 |
+
|
797 |
+
return attn_output, attn_weights, past_key_value
|
798 |
+
|
799 |
+
|
800 |
+
|
801 |
+
class LlamaDecoderLayer(nn.Module):
|
802 |
+
def __init__(self, config: LlamaConfig):
|
803 |
+
super().__init__()
|
804 |
+
self.hidden_size = config.hidden_size
|
805 |
+
self.self_attn = LlamaAttention(config=config)
|
806 |
+
self.mlp = LlamaMLP(
|
807 |
+
hidden_size=self.hidden_size,
|
808 |
+
intermediate_size=config.intermediate_size,
|
809 |
+
hidden_act=config.hidden_act,
|
810 |
+
)
|
811 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
812 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
813 |
+
|
814 |
+
def forward(
|
815 |
+
self,
|
816 |
+
hidden_states: torch.Tensor,
|
817 |
+
attention_mask: Optional[torch.Tensor] = None,
|
818 |
+
position_ids: Optional[torch.LongTensor] = None,
|
819 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
820 |
+
output_attentions: Optional[bool] = False,
|
821 |
+
use_cache: Optional[bool] = False,
|
822 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
823 |
+
"""
|
824 |
+
Args:
|
825 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
826 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
827 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
828 |
+
output_attentions (`bool`, *optional*):
|
829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
830 |
+
returned tensors for more detail.
|
831 |
+
use_cache (`bool`, *optional*):
|
832 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
833 |
+
(see `past_key_values`).
|
834 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
835 |
+
"""
|
836 |
+
|
837 |
+
residual = hidden_states
|
838 |
+
|
839 |
+
hidden_states = self.input_layernorm(hidden_states)
|
840 |
+
|
841 |
+
# Self Attention
|
842 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
843 |
+
hidden_states=hidden_states,
|
844 |
+
attention_mask=attention_mask,
|
845 |
+
position_ids=position_ids,
|
846 |
+
past_key_value=past_key_value,
|
847 |
+
output_attentions=output_attentions,
|
848 |
+
use_cache=use_cache,
|
849 |
+
)
|
850 |
+
hidden_states = residual + hidden_states
|
851 |
+
|
852 |
+
# Fully Connected
|
853 |
+
residual = hidden_states
|
854 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
855 |
+
hidden_states = self.mlp(hidden_states)
|
856 |
+
hidden_states = residual + hidden_states
|
857 |
+
|
858 |
+
outputs = (hidden_states,)
|
859 |
+
|
860 |
+
if output_attentions:
|
861 |
+
outputs += (self_attn_weights,)
|
862 |
+
|
863 |
+
if use_cache:
|
864 |
+
outputs += (present_key_value,)
|
865 |
+
|
866 |
+
return outputs
|
867 |
+
|
868 |
+
|
869 |
+
@add_start_docstrings(
|
870 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
871 |
+
LLAMA_START_DOCSTRING,
|
872 |
+
)
|
873 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
874 |
+
config_class = LlamaConfig
|
875 |
+
base_model_prefix = "model"
|
876 |
+
supports_gradient_checkpointing = True
|
877 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
878 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
879 |
+
|
880 |
+
def _init_weights(self, module):
|
881 |
+
std = self.config.initializer_range
|
882 |
+
if isinstance(module, nn.Linear):
|
883 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
884 |
+
if module.bias is not None:
|
885 |
+
module.bias.data.zero_()
|
886 |
+
elif isinstance(module, nn.Embedding):
|
887 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
888 |
+
if module.padding_idx is not None:
|
889 |
+
module.weight.data[module.padding_idx].zero_()
|
890 |
+
|
891 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
892 |
+
if isinstance(module, LlamaModel):
|
893 |
+
module.gradient_checkpointing = value
|
894 |
+
|
895 |
+
|
896 |
+
@add_start_docstrings(
|
897 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
898 |
+
LLAMA_START_DOCSTRING,
|
899 |
+
)
|
900 |
+
class LlamaModel(LlamaPreTrainedModel):
|
901 |
+
"""
|
902 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
903 |
+
|
904 |
+
Args:
|
905 |
+
config: LlamaConfig
|
906 |
+
"""
|
907 |
+
|
908 |
+
def __init__(self, config: LlamaConfig):
|
909 |
+
super().__init__(config)
|
910 |
+
self.padding_idx = config.pad_token_id
|
911 |
+
self.vocab_size = config.vocab_size
|
912 |
+
|
913 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
914 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
915 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
916 |
+
|
917 |
+
self.gradient_checkpointing = False
|
918 |
+
# Initialize weights and apply final processing
|
919 |
+
self.post_init()
|
920 |
+
|
921 |
+
def get_input_embeddings(self):
|
922 |
+
return self.embed_tokens
|
923 |
+
|
924 |
+
def set_input_embeddings(self, value):
|
925 |
+
self.embed_tokens = value
|
926 |
+
|
927 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
928 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
929 |
+
# create causal mask
|
930 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
931 |
+
combined_attention_mask = None
|
932 |
+
if input_shape[-1] > 1:
|
933 |
+
combined_attention_mask = _make_causal_mask(
|
934 |
+
input_shape,
|
935 |
+
inputs_embeds.dtype,
|
936 |
+
device=inputs_embeds.device,
|
937 |
+
past_key_values_length=past_key_values_length,
|
938 |
+
)
|
939 |
+
|
940 |
+
if attention_mask is not None:
|
941 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
942 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
943 |
+
inputs_embeds.device
|
944 |
+
)
|
945 |
+
combined_attention_mask = (
|
946 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
947 |
+
)
|
948 |
+
|
949 |
+
return combined_attention_mask
|
950 |
+
|
951 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
952 |
+
def forward(
|
953 |
+
self,
|
954 |
+
input_ids: torch.LongTensor = None,
|
955 |
+
attention_mask: Optional[torch.Tensor] = None,
|
956 |
+
position_ids: Optional[torch.LongTensor] = None,
|
957 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
958 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
959 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
960 |
+
use_cache: Optional[bool] = None,
|
961 |
+
output_attentions: Optional[bool] = None,
|
962 |
+
output_hidden_states: Optional[bool] = None,
|
963 |
+
return_dict: Optional[bool] = None,
|
964 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
965 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
966 |
+
output_hidden_states = (
|
967 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
968 |
+
)
|
969 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
970 |
+
|
971 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
972 |
+
|
973 |
+
# retrieve input_ids and inputs_embeds
|
974 |
+
if input_ids is not None and inputs_embeds is not None:
|
975 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
976 |
+
elif input_ids is not None:
|
977 |
+
batch_size, seq_length = input_ids.shape
|
978 |
+
elif inputs_embeds is not None:
|
979 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
980 |
+
else:
|
981 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
982 |
+
|
983 |
+
if inputs_embeds is None:
|
984 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
985 |
+
if query_embeds is not None:
|
986 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
987 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
988 |
+
|
989 |
+
seq_length_with_past = seq_length
|
990 |
+
past_key_values_length = 0
|
991 |
+
|
992 |
+
if past_key_values is not None:
|
993 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
994 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
995 |
+
|
996 |
+
if position_ids is None:
|
997 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
998 |
+
position_ids = torch.arange(
|
999 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1000 |
+
)
|
1001 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1002 |
+
else:
|
1003 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1004 |
+
|
1005 |
+
# embed positions
|
1006 |
+
if attention_mask is None:
|
1007 |
+
attention_mask = torch.ones(
|
1008 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
1009 |
+
)
|
1010 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1011 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
hidden_states = inputs_embeds
|
1015 |
+
|
1016 |
+
if self.gradient_checkpointing and self.training:
|
1017 |
+
if use_cache:
|
1018 |
+
logger.warning_once(
|
1019 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1020 |
+
)
|
1021 |
+
use_cache = False
|
1022 |
+
|
1023 |
+
# decoder layers
|
1024 |
+
all_hidden_states = () if output_hidden_states else None
|
1025 |
+
all_self_attns = () if output_attentions else None
|
1026 |
+
next_decoder_cache = () if use_cache else None
|
1027 |
+
|
1028 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1029 |
+
if output_hidden_states:
|
1030 |
+
all_hidden_states += (hidden_states,)
|
1031 |
+
|
1032 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1033 |
+
|
1034 |
+
if self.gradient_checkpointing and self.training:
|
1035 |
+
|
1036 |
+
def create_custom_forward(module):
|
1037 |
+
def custom_forward(*inputs):
|
1038 |
+
# None for past_key_value
|
1039 |
+
return module(*inputs, output_attentions, None)
|
1040 |
+
|
1041 |
+
return custom_forward
|
1042 |
+
|
1043 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1044 |
+
create_custom_forward(decoder_layer),
|
1045 |
+
hidden_states,
|
1046 |
+
attention_mask,
|
1047 |
+
position_ids,
|
1048 |
+
None,
|
1049 |
+
)
|
1050 |
+
else:
|
1051 |
+
layer_outputs = decoder_layer(
|
1052 |
+
hidden_states,
|
1053 |
+
attention_mask=attention_mask,
|
1054 |
+
position_ids=position_ids,
|
1055 |
+
past_key_value=past_key_value,
|
1056 |
+
output_attentions=output_attentions,
|
1057 |
+
use_cache=use_cache,
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
hidden_states = layer_outputs[0]
|
1061 |
+
|
1062 |
+
if use_cache:
|
1063 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1064 |
+
|
1065 |
+
if output_attentions:
|
1066 |
+
all_self_attns += (layer_outputs[1],)
|
1067 |
+
|
1068 |
+
hidden_states = self.norm(hidden_states)
|
1069 |
+
|
1070 |
+
# add hidden states from the last decoder layer
|
1071 |
+
if output_hidden_states:
|
1072 |
+
all_hidden_states += (hidden_states,)
|
1073 |
+
|
1074 |
+
next_cache = next_decoder_cache if use_cache else None
|
1075 |
+
if not return_dict:
|
1076 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1077 |
+
return BaseModelOutputWithPast(
|
1078 |
+
last_hidden_state=hidden_states,
|
1079 |
+
past_key_values=next_cache,
|
1080 |
+
hidden_states=all_hidden_states,
|
1081 |
+
attentions=all_self_attns,
|
1082 |
+
)
|
1083 |
+
|
1084 |
+
|
1085 |
+
|
1086 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1087 |
+
def __init__(self, config):
|
1088 |
+
super().__init__(config)
|
1089 |
+
self.model = LlamaModel(config)
|
1090 |
+
|
1091 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1092 |
+
|
1093 |
+
# Initialize weights and apply final processing
|
1094 |
+
self.post_init()
|
1095 |
+
|
1096 |
+
def get_input_embeddings(self):
|
1097 |
+
return self.model.embed_tokens
|
1098 |
+
|
1099 |
+
def set_input_embeddings(self, value):
|
1100 |
+
self.model.embed_tokens = value
|
1101 |
+
|
1102 |
+
def get_output_embeddings(self):
|
1103 |
+
return self.lm_head
|
1104 |
+
|
1105 |
+
def set_output_embeddings(self, new_embeddings):
|
1106 |
+
self.lm_head = new_embeddings
|
1107 |
+
|
1108 |
+
def set_decoder(self, decoder):
|
1109 |
+
self.model = decoder
|
1110 |
+
|
1111 |
+
def get_decoder(self):
|
1112 |
+
return self.model
|
1113 |
+
|
1114 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1115 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1116 |
+
def forward(
|
1117 |
+
self,
|
1118 |
+
input_ids: torch.LongTensor = None,
|
1119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1121 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1122 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1123 |
+
query_embeds: Optional[torch.FloatTensor] = None,
|
1124 |
+
labels: Optional[torch.LongTensor] = None,
|
1125 |
+
use_cache: Optional[bool] = None,
|
1126 |
+
output_attentions: Optional[bool] = None,
|
1127 |
+
output_hidden_states: Optional[bool] = None,
|
1128 |
+
return_dict: Optional[bool] = None,
|
1129 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1130 |
+
r"""
|
1131 |
+
Args:
|
1132 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1133 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1134 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1135 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1136 |
+
|
1137 |
+
Returns:
|
1138 |
+
|
1139 |
+
Example:
|
1140 |
+
|
1141 |
+
```python
|
1142 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1143 |
+
|
1144 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1145 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1146 |
+
|
1147 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
1148 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1149 |
+
|
1150 |
+
>>> # Generate
|
1151 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1152 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1153 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
1154 |
+
```"""
|
1155 |
+
|
1156 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1157 |
+
output_hidden_states = (
|
1158 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1159 |
+
)
|
1160 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1161 |
+
|
1162 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1163 |
+
outputs = self.model(
|
1164 |
+
input_ids=input_ids,
|
1165 |
+
attention_mask=attention_mask,
|
1166 |
+
position_ids=position_ids,
|
1167 |
+
past_key_values=past_key_values,
|
1168 |
+
inputs_embeds=inputs_embeds,
|
1169 |
+
query_embeds=query_embeds,
|
1170 |
+
use_cache=use_cache,
|
1171 |
+
output_attentions=output_attentions,
|
1172 |
+
output_hidden_states=output_hidden_states,
|
1173 |
+
return_dict=return_dict,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
hidden_states = outputs[0]
|
1177 |
+
logits = self.lm_head(hidden_states)
|
1178 |
+
|
1179 |
+
loss = None
|
1180 |
+
if labels is not None:
|
1181 |
+
# Shift so that tokens < n predict n
|
1182 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1183 |
+
shift_labels = labels[..., 1:].contiguous()
|
1184 |
+
# Flatten the tokens
|
1185 |
+
loss_fct = CrossEntropyLoss()
|
1186 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1187 |
+
shift_labels = shift_labels.view(-1)
|
1188 |
+
# Enable model parallelism
|
1189 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1190 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1191 |
+
|
1192 |
+
if not return_dict:
|
1193 |
+
output = (logits,) + outputs[1:]
|
1194 |
+
return (loss,) + output if loss is not None else output
|
1195 |
+
|
1196 |
+
return CausalLMOutputWithPast(
|
1197 |
+
loss=loss,
|
1198 |
+
logits=logits,
|
1199 |
+
past_key_values=outputs.past_key_values,
|
1200 |
+
hidden_states=outputs.hidden_states,
|
1201 |
+
attentions=outputs.attentions,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
def prepare_inputs_for_generation(
|
1205 |
+
self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1206 |
+
):
|
1207 |
+
if past_key_values:
|
1208 |
+
input_ids = input_ids[:, -1:]
|
1209 |
+
|
1210 |
+
position_ids = kwargs.get("position_ids", None)
|
1211 |
+
if attention_mask is not None and position_ids is None:
|
1212 |
+
# create position_ids on the fly for batch generation
|
1213 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1214 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1215 |
+
if past_key_values:
|
1216 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1217 |
+
query_embeds = None
|
1218 |
+
|
1219 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1220 |
+
if inputs_embeds is not None and past_key_values is None:
|
1221 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1222 |
+
else:
|
1223 |
+
model_inputs = {"input_ids": input_ids}
|
1224 |
+
|
1225 |
+
model_inputs.update(
|
1226 |
+
{
|
1227 |
+
"position_ids": position_ids,
|
1228 |
+
"query_embeds": query_embeds,
|
1229 |
+
"past_key_values": past_key_values,
|
1230 |
+
"use_cache": kwargs.get("use_cache"),
|
1231 |
+
"attention_mask": attention_mask,
|
1232 |
+
}
|
1233 |
+
)
|
1234 |
+
return model_inputs
|
1235 |
+
|
1236 |
+
@staticmethod
|
1237 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1238 |
+
reordered_past = ()
|
1239 |
+
for layer_past in past_key_values:
|
1240 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1241 |
+
return reordered_past
|
1242 |
+
|
1243 |
+
|
1244 |
+
@registry.register_model("musilingo")
|
1245 |
+
class MusiLingo(BaseModel):
|
1246 |
+
"""
|
1247 |
+
MERT GPT-LLAMA model.
|
1248 |
+
"""
|
1249 |
+
|
1250 |
+
PRETRAINED_MODEL_CONFIG_DICT = {
|
1251 |
+
"pretrain_vicuna": "configs/models/musilingo.yaml",
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
def __init__(
|
1255 |
+
self,
|
1256 |
+
mert_model,
|
1257 |
+
llama_model,
|
1258 |
+
prompt_path="",
|
1259 |
+
prompt_template="",
|
1260 |
+
max_txt_len=32,
|
1261 |
+
end_sym='\n',
|
1262 |
+
low_resource=False, # use 8 bit and put vit in cpu
|
1263 |
+
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
|
1264 |
+
):
|
1265 |
+
super().__init__()
|
1266 |
+
|
1267 |
+
self.low_resource = low_resource
|
1268 |
+
|
1269 |
+
print('Loading Audio Encoder')
|
1270 |
+
self.audio_encoder = AutoModel.from_pretrained(mert_model, trust_remote_code=True)
|
1271 |
+
# loading the corresponding preprocessor config
|
1272 |
+
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(mert_model, trust_remote_code=True)
|
1273 |
+
|
1274 |
+
for name, param in self.audio_encoder.named_parameters():
|
1275 |
+
param.requires_grad = False
|
1276 |
+
self.audio_encoder = self.audio_encoder.eval()
|
1277 |
+
|
1278 |
+
print('Loading Audio Encoder Done')
|
1279 |
+
|
1280 |
+
print('Loading LLAMA')
|
1281 |
+
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
|
1282 |
+
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
1283 |
+
|
1284 |
+
if self.low_resource:
|
1285 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
1286 |
+
llama_model,
|
1287 |
+
torch_dtype=torch.float16,
|
1288 |
+
load_in_8bit=True,
|
1289 |
+
device_map={'': device_8bit}
|
1290 |
+
)
|
1291 |
+
else:
|
1292 |
+
self.llama_model = LlamaForCausalLM.from_pretrained(
|
1293 |
+
llama_model,
|
1294 |
+
torch_dtype=torch.float16,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
for name, param in self.llama_model.named_parameters():
|
1298 |
+
param.requires_grad = False
|
1299 |
+
print('Loading LLAMA Done')
|
1300 |
+
|
1301 |
+
self.llama_proj = nn.Linear(
|
1302 |
+
self.audio_encoder.config.hidden_size, self.llama_model.config.hidden_size
|
1303 |
+
)
|
1304 |
+
self.max_txt_len = max_txt_len
|
1305 |
+
self.end_sym = end_sym
|
1306 |
+
|
1307 |
+
self.prompt_template = prompt_template
|
1308 |
+
|
1309 |
+
if prompt_path:
|
1310 |
+
with open(prompt_path, 'r') as f:
|
1311 |
+
raw_prompts = f.read().splitlines()
|
1312 |
+
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<AudioHere>" in raw_prompt]
|
1313 |
+
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
|
1314 |
+
print('Load {} training prompts'.format(len(self.prompt_list)))
|
1315 |
+
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
|
1316 |
+
else:
|
1317 |
+
self.prompt_list = []
|
1318 |
+
|
1319 |
+
def audioenc_to_cpu(self):
|
1320 |
+
self.audio_encoder.to("cpu")
|
1321 |
+
self.audio_encoder.float()
|
1322 |
+
|
1323 |
+
def encode_audio(self, audio, attn=None):
|
1324 |
+
device = audio.device
|
1325 |
+
if self.low_resource:
|
1326 |
+
self.audioenc_to_cpu()
|
1327 |
+
audio = audio.to("cpu")
|
1328 |
+
|
1329 |
+
if attn is None:
|
1330 |
+
|
1331 |
+
audio_embeds = torch.stack(self.audio_encoder(input_values=audio,
|
1332 |
+
output_hidden_states=True).hidden_states) # [25, B, T, 1024]
|
1333 |
+
audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
|
1334 |
+
|
1335 |
+
else:
|
1336 |
+
|
1337 |
+
audio_embeds = torch.stack(self.audio_encoder(input_values=audio,
|
1338 |
+
output_hidden_states=True,
|
1339 |
+
attention_mask=attn).hidden_states) # [25, B, T, 1024]
|
1340 |
+
audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
|
1341 |
+
|
1342 |
+
# Average time steps:
|
1343 |
+
t = 325
|
1344 |
+
B, T, D = audio_embeds.shape
|
1345 |
+
avg_tmp = audio_embeds[:, :T//t*t].reshape(B, T//t, t, D).mean(2)
|
1346 |
+
|
1347 |
+
# Average the remaining steps
|
1348 |
+
if T % t > 0:
|
1349 |
+
avg_last = audio_embeds[:, T//t*t:].reshape(B, 1, T%t, D).mean(2)
|
1350 |
+
audio_embeds = torch.concat([avg_tmp, avg_last], dim=1)
|
1351 |
+
else:
|
1352 |
+
audio_embeds = avg_tmp
|
1353 |
+
audio_embeds = audio_embeds.to(device)
|
1354 |
+
inputs_llama = self.llama_proj(audio_embeds)
|
1355 |
+
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(audio.device)
|
1356 |
+
return inputs_llama, atts_llama
|
1357 |
+
|
1358 |
+
def prompt_wrap(self, audio_embeds, atts_audio, prompt):
|
1359 |
+
if prompt:
|
1360 |
+
batch_size = audio_embeds.shape[0]
|
1361 |
+
p_before, p_after = prompt.split('<AudioHere>')
|
1362 |
+
p_before_tokens = self.llama_tokenizer(
|
1363 |
+
p_before, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
|
1364 |
+
p_after_tokens = self.llama_tokenizer(
|
1365 |
+
p_after, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
|
1366 |
+
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
|
1367 |
+
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
|
1368 |
+
wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
|
1369 |
+
wrapped_atts_audio = atts_audio[:, :1].expand(-1, wrapped_audio_embeds.shape[1])
|
1370 |
+
return wrapped_audio_embeds, wrapped_atts_audio
|
1371 |
+
else:
|
1372 |
+
return audio_embeds, atts_audio
|
1373 |
+
|
1374 |
+
def instruction_prompt_wrap(self, audio_embeds, atts_audio, prompt):
|
1375 |
+
if prompt:
|
1376 |
+
batch_size = audio_embeds.shape[0]
|
1377 |
+
p_before = []
|
1378 |
+
p_after = []
|
1379 |
+
|
1380 |
+
for i in range(batch_size):
|
1381 |
+
p_b, p_a = prompt[i].split('<AudioHere>')
|
1382 |
+
p_before.append(p_b)
|
1383 |
+
p_after.append(p_a)
|
1384 |
+
|
1385 |
+
p_before_tokens = self.llama_tokenizer(
|
1386 |
+
p_before, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
|
1387 |
+
p_after_tokens = self.llama_tokenizer(
|
1388 |
+
p_after, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
|
1389 |
+
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids)
|
1390 |
+
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids)
|
1391 |
+
wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
|
1392 |
+
wrapped_atts_audio = torch.cat([p_before_tokens.attention_mask, atts_audio, p_after_tokens.attention_mask], dim=1)
|
1393 |
+
return wrapped_audio_embeds, wrapped_atts_audio
|
1394 |
+
else:
|
1395 |
+
return audio_embeds, atts_audio
|
1396 |
+
|
1397 |
+
|
1398 |
+
def forward(self, samples):
|
1399 |
+
audio = samples["audio"]
|
1400 |
+
attn = samples["attention_mask"] if "attention_mask" in samples else None
|
1401 |
+
audio_embeds, atts_audio = self.encode_audio(audio, attn)
|
1402 |
+
|
1403 |
+
if 'instruction_input' in samples: # instruction tuning dataset
|
1404 |
+
instruction_prompt = []
|
1405 |
+
for instruction in samples['instruction_input']:
|
1406 |
+
prompt = '<Audio><AudioHere></Audio> ' + instruction
|
1407 |
+
instruction_prompt.append(self.prompt_template.format(prompt))
|
1408 |
+
audio_embeds, atts_audio = self.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
|
1409 |
+
|
1410 |
+
elif self.prompt_list:
|
1411 |
+
prompt = random.choice(self.prompt_list)
|
1412 |
+
audio_embeds, atts_audio = self.prompt_wrap(audio_embeds, atts_audio, prompt)
|
1413 |
+
|
1414 |
+
self.llama_tokenizer.padding_side = "right"
|
1415 |
+
|
1416 |
+
text = [t + self.end_sym for t in samples["text_input"]]
|
1417 |
+
|
1418 |
+
to_regress_tokens = self.llama_tokenizer(
|
1419 |
+
text,
|
1420 |
+
return_tensors="pt",
|
1421 |
+
padding="longest",
|
1422 |
+
truncation=True,
|
1423 |
+
max_length=self.max_txt_len,
|
1424 |
+
add_special_tokens=False
|
1425 |
+
).to(audio.device)
|
1426 |
+
|
1427 |
+
targets = to_regress_tokens.input_ids.masked_fill(
|
1428 |
+
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
|
1429 |
+
)
|
1430 |
+
|
1431 |
+
empty_targets = (
|
1432 |
+
torch.ones([atts_audio.shape[0], atts_audio.shape[1]+1],
|
1433 |
+
dtype=torch.long).to(audio.device).fill_(-100) # plus one for bos
|
1434 |
+
)
|
1435 |
+
targets = torch.cat([empty_targets, targets], dim=1)
|
1436 |
+
|
1437 |
+
batch_size = audio_embeds.shape[0]
|
1438 |
+
bos = torch.ones([batch_size, 1],
|
1439 |
+
dtype=to_regress_tokens.input_ids.dtype,
|
1440 |
+
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
|
1441 |
+
bos_embeds = self.llama_model.model.embed_tokens(bos)
|
1442 |
+
atts_bos = atts_audio[:, :1]
|
1443 |
+
|
1444 |
+
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
|
1445 |
+
inputs_embeds = torch.cat([bos_embeds, audio_embeds, to_regress_embeds], dim=1)
|
1446 |
+
attention_mask = torch.cat([atts_bos, atts_audio, to_regress_tokens.attention_mask], dim=1)
|
1447 |
+
|
1448 |
+
outputs = self.llama_model(
|
1449 |
+
inputs_embeds=inputs_embeds,
|
1450 |
+
attention_mask=attention_mask,
|
1451 |
+
return_dict=True,
|
1452 |
+
labels=targets,
|
1453 |
+
)
|
1454 |
+
loss = outputs.loss
|
1455 |
+
|
1456 |
+
return {"loss": loss}
|
1457 |
+
|
1458 |
+
@classmethod
|
1459 |
+
def from_config(cls, cfg):
|
1460 |
+
mert_model = cfg.get("mert_model", "")
|
1461 |
+
llama_model = cfg.get("llama_model")
|
1462 |
+
|
1463 |
+
low_resource = cfg.get("low_resource", False)
|
1464 |
+
device_8bit = cfg.get("device_8bit", 0)
|
1465 |
+
|
1466 |
+
prompt_path = cfg.get("prompt_path", "")
|
1467 |
+
prompt_template = cfg.get("prompt_template", "")
|
1468 |
+
max_txt_len = cfg.get("max_txt_len", 32)
|
1469 |
+
end_sym = cfg.get("end_sym", '\n')
|
1470 |
+
|
1471 |
+
model = cls(
|
1472 |
+
mert_model=mert_model,
|
1473 |
+
llama_model=llama_model,
|
1474 |
+
prompt_path=prompt_path,
|
1475 |
+
prompt_template=prompt_template,
|
1476 |
+
max_txt_len=max_txt_len,
|
1477 |
+
end_sym=end_sym,
|
1478 |
+
low_resource=low_resource,
|
1479 |
+
device_8bit=device_8bit,
|
1480 |
+
)
|
1481 |
+
|
1482 |
+
ckpt_path = cfg.get("ckpt", "") # load ckpt weights of MusiLingo
|
1483 |
+
if ckpt_path:
|
1484 |
+
print("Load MERT-LLM Checkpoint: {}".format(ckpt_path))
|
1485 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
1486 |
+
msg = model.load_state_dict(ckpt['model'], strict=False)
|
1487 |
+
|
1488 |
+
return model
|
1489 |
+
|
1490 |
+
|
1491 |
+
class MusilingoModel(PreTrainedModel):
|
1492 |
+
config_class = MusiLingoConfig
|
1493 |
+
def __init__(self, config):
|
1494 |
+
super().__init__(config)
|
1495 |
+
self.model = MusiLingo(
|
1496 |
+
mert_model=config.mert_model,
|
1497 |
+
llama_model=config.llama_model,
|
1498 |
+
prompt_path=config.prompt_path,
|
1499 |
+
prompt_template=config.prompt_template,
|
1500 |
+
max_txt_len=config.max_txt_len,
|
1501 |
+
end_sym=config.end_sym,
|
1502 |
+
low_resource=config.low_resource,
|
1503 |
+
device_8bit=config.device_8bit
|
1504 |
+
# self.linear_ckpt_path = config.linear_ckpt_path``
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
|
1508 |
+
def forward(self, tensor):
|
1509 |
+
return self.model.forward(tensor)
|