File size: 1,822 Bytes
5b6bbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
model-index:
- name: mva_ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mva_ner

This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
- Year F1: 1.0
- Years Ago F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Year F1 | Years Ago F1 |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------:|:------------:|
| 0.0171        | 55.56  | 1000 | 0.0004          | 1.0               | 1.0            | 1.0        | 1.0              | 1.0     | 1.0          |
| 0.0005        | 111.11 | 2000 | 0.0001          | 1.0               | 1.0            | 1.0        | 1.0              | 1.0     | 1.0          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1