system HF staff commited on
Commit
afe66c1
·
1 Parent(s): 5a578ea

Update README.txt

Browse files
Files changed (1) hide show
  1. README.txt +46 -0
README.txt ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ :::::README::::::
2
+ AlBERTo the first italian BERT model for Twitter languange understanding
3
+
4
+ Recent scientific studies on natural language processing (NLP) report the outstanding effectiveness observed in the use of context-dependent and task-free language understanding models such as ELMo, GPT, and BERT. Specifically, they have proved to achieve state of the art performance in numerous complex NLP tasks such as question answering and sentiment analysis in the English language. Following the great popularity and effectiveness that these models are gaining in the scientific community, we trained a BERT language understanding model for the Italian language (AlBERTo). In particular, AlBERTo is focused on the language used in social networks, specifically on Twitter. To demonstrate its robustness, we evaluated AlBERTo on the EVALITA 2016 task SENTIPOLC (SENTIment POLarity Classification) obtaining state of the art results in subjectivity, polarity and irony detection on Italian tweets. The pre-trained AlBERTo model will be publicly distributed through the GitHub platform at the following web address: https://github.com/marcopoli/AlBERTo-it in order to facilitate future research.
5
+ http://ceur-ws.org/Vol-2481/paper57.pdf
6
+
7
+ Please cite:
8
+ @InProceedings{PolignanoEtAlCLIC2019,
9
+ author = {Marco Polignano and Pierpaolo Basile and Marco de Gemmis and Giovanni Semeraro and Valerio Basile},
10
+ title = {{AlBERTo: Italian BERT Language Understanding Model for NLP Challenging Tasks Based on Tweets}},
11
+ booktitle = {Proceedings of the Sixth Italian Conference on Computational Linguistics (CLiC-it 2019)},
12
+ year = {2019},
13
+ publisher = {CEUR},
14
+ journal={CEUR Workshop Proceedings},
15
+ volume={2481},
16
+ url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074851349&partnerID=40&md5=7abed946e06f76b3825ae5e294ffac14},
17
+ document_type={Conference Paper},
18
+ source={Scopus}
19
+ }
20
+
21
+ ::::CREDITS::::
22
+ Authors: Marco Polignano, Pierpaolo Basile, Marco de Gemmis, Giovanni Semeraro
23
+ University of Bari ALDO Moro
24
+
25
+ Valerio Basile
26
+ University of Turin
27
+
28
+ Thanks to: Angelo Basile
29
+ Junior Research Scientist at Symanto - Profiling AI
30
+ for tensorflow and pytorch models compatible with huggingface.co Transformers library
31
+
32
+
33
+ ::::COPYRIGHTS::::
34
+ # Copyright 2019 Marco Polignano
35
+ #
36
+ # Licensed under the Apache License, Version 2.0 (the "License");
37
+ # you may not use this file except in compliance with the License.
38
+ # You may obtain a copy of the License at
39
+ #
40
+ # http://www.apache.org/licenses/LICENSE-2.0
41
+ #
42
+ # Unless required by applicable law or agreed to in writing, software
43
+ # distributed under the License is distributed on an "AS IS" BASIS,
44
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
45
+ # See the License for the specific language governing permissions and
46
+ # limitations under the License.