{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7950efc47a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694516444987411262, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYzBr76X6E/itSfvsWmIr8+gEq+2iMJvgAAAAAAAAAAgKiPPeE/lD3uq8S9pw62vnw6u71ONdG7AAAAAAAAAADa+5695oZzPwdLGr7z7QW/9dsWvn1cG70AAAAAAAAAAAC3UD4N1XQ/05W0PkMH1b4P3Y0+u4xgPgAAAAAAAAAAAED5vK9kZj96aYi9esXvvhw/nL0nzY06AAAAAAAAAABN7RE9Q4R7Pegx3zpdB5m+QngCvBAi2zwAAAAAAAAAAE2xWz0IvpO8HXHMPWXKnL0eIP+9U9l7vgAAgD8AAIA/ZkbPO/Z8X7pAdECz91jnL+MJiDruUs0zAACAPwAAgD9zlJ09viqoPuNMFb6bVda+ukqyvflSiLsAAAAAAAAAAGaV5byfgsS7MT9Cu4znyr2qcO07+OEzPwAAgD8AAIA/QMGSPdevRjwbIIk979B2vjPFurxdSxU9AAAAAAAAAACmH6c9pcwbPgR3kjvAgV2+JGqwPEqMTj0AAAAAAAAAAAD+LT17asO6ANlju0bEgzxGrMY7uLFlvQAAgD8AAIA/ZmXpvfhQoz6yypk+lkNDvvcPsTvawqk9AAAAAAAAAACA8b09GODiPpzMSL7069C+UXC/vTIh+7wAAAAAAAAAABOraz5DPlU/pjQCvkekpb7cOwc+6aKivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLGWGRFI/aMAWyUS/aMAXSUR0DL4G67EpAldX2UKGgGR0By/0sFt8/maAdNFgFoCEdAy+CrRHf/FXV9lChoBkdAcYIQ7tAs1GgHTQMBaAhHQMvgvTollbx1fZQoaAZHQHJ5HKSxJNFoB0vtaAhHQMvg1cI7eVN1fZQoaAZHQHAlGXb/Ot5oB00MAWgIR0DL4OWxKQJYdX2UKGgGR0BxBF32VVxTaAdL/mgIR0DL4OrtqpLmdX2UKGgGR0BxKDIQvpQlaAdNQAFoCEdAy+D6PczqKXV9lChoBkdAci9hIe5nUWgHS/9oCEdAy+D9XyRSxnV9lChoBkdAcgwg+hXbNGgHS+toCEdAy+EDXOGCZnV9lChoBkdAcTy+cYqG12gHS+1oCEdAy+EVlXiiqXV9lChoBkdAckiNIK+i8GgHS9loCEdAy+E2DV6NVHV9lChoBkdAaB0NR3u/lGgHTegDaAhHQMvhOFbNbC91fZQoaAZHQHCNU+s5n15oB0vraAhHQMvhOrRKHwh1fZQoaAZHQHMGYy9EkSpoB00QAWgIR0DL4T4WxhUjdX2UKGgGR0ByDZ+8XenAaAdL+mgIR0DL4T431jAjdX2UKGgGR0BzEufh/Aj6aAdNDAFoCEdAy+FmMm4RVnV9lChoBkdAcnguf29L6GgHS95oCEdAy+F8t6HCXXV9lChoBkdAc0RnrpqynmgHTSMBaAhHQMvhf0HQhOh1fZQoaAZHQHChiWzF+/hoB0veaAhHQMvhiosyzol1fZQoaAZHQG/W3tKIznBoB0vkaAhHQMvhoKnm7rd1fZQoaAZHQHHUB3Roh6loB0vhaAhHQMvhwNoBaLZ1fZQoaAZHQHKWEZWJaaFoB0v+aAhHQMvhwpoCdSV1fZQoaAZHQHEpTIV/MGJoB0v0aAhHQMvhyuGbkOt1fZQoaAZHQHCN6Ieo1k1oB0vcaAhHQMvhzfATIvJ1fZQoaAZHQHJE3xe9i+doB0v+aAhHQMvh1Ru0kW11fZQoaAZHQHHCSP2f029oB00pAWgIR0DL4epy8zyjdX2UKGgGR0BvfoYixFAnaAdL22gIR0DL4e1wHZ9NdX2UKGgGR0BxTkophF3IaAdNBQFoCEdAy+IMq5sj3XV9lChoBkdAcTv2DQJHAmgHTQIBaAhHQMviEgJLM9t1fZQoaAZHQHGlDafzz3BoB0v4aAhHQMviNrCN0eV1fZQoaAZHQHFHThP0qYtoB006AWgIR0DL4jz5XU6QdX2UKGgGR0BtBsqtozvaaAdNPQFoCEdAy+JE176YV3V9lChoBkdAcVK0jkdWAGgHS/9oCEdAy+JRiLEUCnV9lChoBkdAcPe2QXAM2GgHTQgBaAhHQMviWrOZ9eB1fZQoaAZHQHD1tzXBgu1oB0v+aAhHQMviXaaCtih1fZQoaAZHQHLm2OMl1KZoB0v7aAhHQMvkhIjW07d1fZQoaAZHQHE+gRChN/RoB0v3aAhHQMvkrahQFcJ1fZQoaAZHQHJw5VsDW9VoB00GAWgIR0DL5K5geA/cdX2UKGgGR0BxirPrv9cbaAdL/WgIR0DL5LAR7JGOdX2UKGgGR0Bwy9WMju8caAdL+mgIR0DL5Ld7tzCDdX2UKGgGR0BxbXYukDZEaAdNFgFoCEdAy+S8FfzBh3V9lChoBkdAcYjclw97nmgHS+xoCEdAy+TC6Oo5xXV9lChoBkdAcVZfZmI0qGgHS+ZoCEdAy+TaymALA3V9lChoBkdAcTr4SpR4yGgHS+BoCEdAy+Ta0l7dBXV9lChoBkdAbZ/dxAB1cWgHTTcBaAhHQMvk+y13MZB1fZQoaAZHQG9f7btZ3cJoB0vzaAhHQMvlEmWMS9N1fZQoaAZHQHGngzxgAp9oB0v6aAhHQMvlEs7U5Ml1fZQoaAZHQHLJy1y/9HdoB0vUaAhHQMvlF/4h2W91fZQoaAZHQG1M5nctXgdoB0vyaAhHQMvlGSTQmeF1fZQoaAZHQHGxm3fAKv5oB0vtaAhHQMvlISksSTR1fZQoaAZHQHNPf8dgfEJoB0v2aAhHQMvlMzyJ9Ap1fZQoaAZHQG3LL9/BnBdoB00YAWgIR0DL5WSBf8dgdX2UKGgGR0BveaHymQ8waAdL7GgIR0DL5WjufEn9dX2UKGgGR0BwiRs9B8hLaAdL82gIR0DL5W9rVOKwdX2UKGgGR0BxbHWRRuTBaAdL2WgIR0DL5XB6MR6GdX2UKGgGR0BzONl8PWhAaAdNDQFoCEdAy+WG2rGR3nV9lChoBkdAcJBrq+rU9mgHS9toCEdAy+WMP7N0NnV9lChoBkdAb7azguRLb2gHTQUBaAhHQMvljWn889x1fZQoaAZHQHJeEILPUrloB00PAWgIR0DL5ZBgb6xgdX2UKGgGR0ByYa4nWrfcaAdL82gIR0DL5Z1c2R7rdX2UKGgGR0BxOmCxu89PaAdNAQFoCEdAy+XHyvLX+XV9lChoBkdAcBPB/ZuhsmgHS+toCEdAy+XNNOdoWnV9lChoBkdAcQuFWGRFJGgHS/FoCEdAy+XZCUHIIXV9lChoBkdAcYWWVeKKpGgHTRcBaAhHQMvl8LiEQGx1fZQoaAZHQHE+cebNKRNoB00eAWgIR0DL5fwHxBmgdX2UKGgGR0A2mzI3irDJaAdL0mgIR0DL5hGsPrfMdX2UKGgGR0Bxja1Z1V5saAdNIwFoCEdAy+Yg64lQdnV9lChoBkdAcYupIMBp6GgHS+5oCEdAy+YxYV6/qXV9lChoBkdAb+N9KmKqGWgHTQoBaAhHQMvmP4y44Id1fZQoaAZHQHEKW0/nnuBoB0v8aAhHQMvmPw+t8u11fZQoaAZHQHDztwiqyW1oB0vmaAhHQMvmR5+x4Y91fZQoaAZHQHJT8uSOinJoB01yAWgIR0DL5k8vduYQdX2UKGgGR0Bsfk/4ZdfLaAdNCAFoCEdAy+ZkieumrXV9lChoBkdAcOM/VRUFS2gHTRIBaAhHQMvmZlWfbsZ1fZQoaAZHQHMqXT/hl19oB00NAWgIR0DL5mscjqwAdX2UKGgGR0ByJ/hCMPz4aAdNCgFoCEdAy+Z2lyimEXV9lChoBkdAcfmp6hQFcWgHS+ZoCEdAy+aKI3zcynV9lChoBkdAbtn974SHumgHS/doCEdAy+aSkKNQ03V9lChoBkdAcJMIy0rsjWgHS8loCEdAy+aV/axoqXV9lChoBkdAcjGFTvRZ2mgHS+doCEdAy+aWFqzqr3V9lChoBkdAbU2hRIjGDWgHS+5oCEdAy+a6nTAnD3V9lChoBkdAbzJhTfixV2gHS+hoCEdAy+bK4hllLHV9lChoBkdASG6Z4Oc2BWgHS8hoCEdAy+ba5Ke05XV9lChoBkdAc0AzT4L1EmgHS/doCEdAy+bl9G7SRnV9lChoBkdAa82MbWEsa2gHS/1oCEdAy+cKmTC+DnV9lChoBkdAcYLvuPV/c2gHS/loCEdAy+cbdnCfpXV9lChoBkdAcpKO+7Dl5mgHTSABaAhHQMvnHp+UhV51fZQoaAZHQHGL4NNJvpBoB0vUaAhHQMvnKEmICU51fZQoaAZHQHEFAOavzOJoB0vyaAhHQMvnL3yAhB91fZQoaAZHQHKMYywfQrtoB00fAWgIR0DL5zXoPkJbdX2UKGgGR0BxdtbB42S/aAdL+2gIR0DL5zV8G9pRdX2UKGgGR0Bub5HCoCMhaAdL1GgIR0DL5z0UuctodX2UKGgGR0ByH5qk/KQraAdL4WgIR0DL51HluFYddX2UKGgGR0BxWKE4//vOaAdL82gIR0DL51x5kbxWdX2UKGgGR0ByujG4qgAZaAdNKAFoCEdAy+deE/Spi3V9lChoBkdAcRzJ17pmmWgHTQgBaAhHQMvncFtCRfZ1fZQoaAZHQG3FybYsd1doB0vyaAhHQMvnmeNT9891fZQoaAZHQHAQ+vQnhKloB00MAWgIR0DL55983MpxdX2UKGgGR0BxcyCPIXCTaAdL5mgIR0DL56CZH/cWdX2UKGgGR0BwxizWwu/UaAdL3GgIR0DL56LGDL8rdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}