antoinelouis commited on
Commit
66e75c5
1 Parent(s): 44c5810

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md CHANGED
@@ -1,3 +1,113 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ language: fr
4
  license: apache-2.0
5
+ datasets:
6
+ - maastrichtlawtech/lleqa
7
+ metrics:
8
+ - recall
9
+ tags:
10
+ - feature-extraction
11
+ - sentence-similarity
12
+ library_name: sentence-transformers
13
  ---
14
+
15
+ # camembert-base-lleqa
16
+
17
+ This is a [sentence-transformers](https://www.SBERT.net) model: it maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on the [LLeQA](https://huggingface.co/datasets/maastrichtlawtech/lleqa) dataset for legal information retrieval in **French**.
18
+
19
+ ## Usage
20
+ ***
21
+
22
+ #### Sentence-Transformers
23
+
24
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
25
+
26
+ ```
27
+ pip install -U sentence-transformers
28
+ ```
29
+
30
+ Then you can use the model like this:
31
+
32
+ ```python
33
+ from sentence_transformers import SentenceTransformer
34
+ sentences = ["This is an example sentence", "Each sentence is converted"]
35
+
36
+ model = SentenceTransformer('maastrichtlawtech/camembert-base-lleqa')
37
+ embeddings = model.encode(sentences)
38
+ print(embeddings)
39
+ ```
40
+
41
+ #### 🤗 Transformers
42
+
43
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
44
+
45
+ ```python
46
+ from transformers import AutoTokenizer, AutoModel
47
+ import torch
48
+
49
+
50
+ #Mean Pooling - Take attention mask into account for correct averaging
51
+ def mean_pooling(model_output, attention_mask):
52
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
53
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
54
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
55
+
56
+ # Sentences we want sentence embeddings for
57
+ sentences = ['This is an example sentence', 'Each sentence is converted']
58
+
59
+ # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-antoinelouis-biencoder-camembert-base-mmarcoFRFR-bsard')
61
+ model = AutoModel.from_pretrained('antoinelouis/biencoder-antoinelouis-biencoder-camembert-base-mmarcoFRFR-bsard')
62
+
63
+ # Tokenize sentences
64
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
65
+
66
+ # Compute token embeddings
67
+ with torch.no_grad():
68
+ model_output = model(**encoded_input)
69
+
70
+ # Perform pooling. In this case, mean pooling.
71
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+ ## Evaluation
76
+ ***
77
+
78
+ We evaluate the model on the test set of LLeQA, which consists of 195 legal questions with a knowlegde corpus of 27.9K candidate articles. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
79
+
80
+ | MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100 | R@500 |
81
+ |---------:|----------:|---------:|-------:|--------:|--------:|
82
+ | 19.03 | 14.36 | 10.77 | 15.95 | 34.12 | 52.26 |
83
+
84
+ ## Training
85
+ ***
86
+
87
+ #### Background
88
+
89
+ We utilize the [camembert-base](https://huggingface.co/camembert-base) model and fine-tuned it on 9.3K question-article pairs in French. We used a contrastive learning objective: given a short legal question, the model should predict which out of a set of sampled legal articles, was actually paired with it in the dataset. Formally, we compute the cosine similarity from each possible pairs from the batch. We then apply the cross entropy loss with a temperature of 0.05 by comparing with true pairs.
90
+
91
+ #### Hyperparameters
92
+
93
+ We trained the model on a single Tesla V100 GPU with 32GBs of memory during 20 epochs (i.e., 5.4k steps) using a batch size of 32. We used the AdamW optimizer with an initial learning rate of 2e-05, weight decay of 0.01, learning rate warmup over the first 50 steps, and linear decay of the learning rate. The sequence length was limited to 384 tokens.
94
+
95
+ #### Data
96
+
97
+ We use the [Long-form Legal Question Answering (LLeQA)](https://huggingface.co/datasets/maastrichtlawtech/lleqa) dataset to fine-tune the model. LLeQA is a French native dataset for studying legal information retrieval and question answering. It consists of a knowledge corpus of 27,941 statutory articles collected from the Belgian legislation, and 1,868 legal questions posed by Belgian citizens and labeled by experienced jurists with a comprehensive answer rooted in relevant articles from the corpus.
98
+
99
+ ## Citation
100
+
101
+ ```bibtex
102
+ @article{louis2023interpretable,
103
+ author = {Louis, Antoine and van Dijck, Gijs and Spanakis, Gerasimos},
104
+ title = {Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models},
105
+ journal = {CoRR},
106
+ volume = {abs/2309.xxxxx},
107
+ year = {2023},
108
+ url = {https://doi.org/},
109
+ doi = {},
110
+ eprinttype = {arXiv},
111
+ eprint = {2309.xxxxx},
112
+ }
113
+ ```
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "antoinelouis/biencoder-camembert-base-mmarcoFR",
3
+ "architectures": [
4
+ "CamembertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 5,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 6,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "camembert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.30.0.dev0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 32005
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.0.dev0",
5
+ "pytorch": "2.1.0.dev20230321+cu117"
6
+ }
7
+ }
dev_scores.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ MRR@10,NDCG@10,MAP@10,Recall@10,Recall@100,Recall@500,model
2
+ 19.03,14.36,10.77,15.95,34.12,52.26,biencoder-antoinelouis-biencoder-camembert-base-mmarcoFRFR-bsard
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a227e4814fdf69df50c64449646d5e8367c1454f2f256b4034e43674cf642c6e
3
+ size 442559021
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988bc5a00281c6d210a5d34bd143d0363741a432fefe741bf71e61b1869d4314
3
+ size 810912
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>NOTUSED",
4
+ "</s>NOTUSED"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "cls_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "mask_token": {
10
+ "content": "<mask>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "sep_token": "</s>",
18
+ "unk_token": "<unk>"
19
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>NOTUSED",
4
+ "</s>NOTUSED"
5
+ ],
6
+ "bos_token": "<s>",
7
+ "clean_up_tokenization_spaces": true,
8
+ "cls_token": "<s>",
9
+ "eos_token": "</s>",
10
+ "mask_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<mask>",
13
+ "lstrip": true,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "model_max_length": 384,
19
+ "pad_token": "<pad>",
20
+ "sep_token": "</s>",
21
+ "tokenizer_class": "CamembertTokenizer",
22
+ "unk_token": "<unk>"
23
+ }