File size: 13,781 Bytes
d63891a |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bba98876680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bba98876710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bba988767a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bba98876830>", "_build": "<function ActorCriticPolicy._build at 0x7bba988768c0>", "forward": "<function ActorCriticPolicy.forward at 0x7bba98876950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bba988769e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bba98876a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7bba98876b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bba98876b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bba98876c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bba98876cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bba435b0680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727348268885172137, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBAuL1IN5u67bxZuUQSQLT/Xae6+F17OAAAAAAAAIA/M4N4PLieobdGG/i2rR2RshMf3zt6gRU2AACAPwAAgD9miR494IelPvsFkr0a7V++qsxxvOjGjLsAAAAAAAAAAGbNuLyuEZy6BSeHOeClfDRtrce6jgucuAAAgD8AAIA/wOYuPhrWFD/uM4W+XBSvvgeJvLzyODO9AAAAAAAAAAAg2V8+8ZYPP8LmzL47Cai+rckUvUVjkr4AAAAAAAAAACbS072P12K8TbJzPdD3HDx7iMo9Zbz+vAAAgD8AAAAAM+0Xvt7ebj95EIW9qzPTvpHe1b0I6Yw9AAAAAAAAAACaSQ+9e6KIuqq267q2Une2gtBjO8qzBjoAAIA/AACAP7PpX70KMkQ8veTTPKDoGb4LXAE9KpmZvQAAAAAAAAAAMzCLvCmgQ7qeCHs27igIMjgWrzsC6JW1AACAPwAAgD8Nnci9eyqFuk0BcD0fFFu+MKE2PaKVib4AAAAAAACAPwBV5b0xdXQ/IAsCvp24zb69cN29UoEnPQAAAAAAAAAADRmdvY9uaLohF8u4M6oPtHa+Ozurb+w3AACAPwAAgD9zjJm9KaxAus1cjDnFmZU0gjkrO6nwpbgAAIA/AACAP5pF6T2X65U/Kue2PpQBCb83goA+iGtjPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHACneenQ6aMAWyUTU8DjAF0lEdAkCjuc+aBqnV9lChoBkdAclevoePq92gHTT4BaAhHQJArKizsyBV1fZQoaAZHQG7GUh/y5I9oB02gAWgIR0CQK20VrRBvdX2UKGgGR0BxFFKzzErHaAdNbAFoCEdAkCyiD/VAiXV9lChoBkdAbHF6cAimmGgHTVIBaAhHQJAwl1nuiN91fZQoaAZHQHCEEgwGnoBoB03BAWgIR0CQMXS3b212dX2UKGgGR0BwhIrJ8v25aAdNVgFoCEdAkDF18PWhAXV9lChoBkdAco39roGIK2gHTQMBaAhHQJAx557gKnh1fZQoaAZHQGvD5wn6VMVoB00LAWgIR0CQM11XNke7dX2UKGgGR0Bv30PczqKQaAdNrAFoCEdAkDUUcOskp3V9lChoBkdAcj/ImPYFq2gHTR4CaAhHQJA1M0Kqn3t1fZQoaAZHQF1rZ+QU5+9oB03oA2gIR0CQNTN+b3GodX2UKGgGR0BwWK9mHxjKaAdNTQFoCEdAkDVGmxdIG3V9lChoBkdAYj1kVeruIGgHTegDaAhHQJA4AgieNDN1fZQoaAZHQHKwo5T6zmhoB01cAWgIR0CQOK4+r2g4dX2UKGgGR0BwIFMN+b3HaAdNxQFoCEdAkDmdHhCMP3V9lChoBkdAcUuGLk0aZWgHTVsBaAhHQJA6CyRjjJd1fZQoaAZHQHHqXDrJKapoB00TAWgIR0CQO+J7LMcIdX2UKGgGR0BwLvEGZ/kOaAdNZgFoCEdAkE7eTzND+nV9lChoBkdAb6v0/W1+iWgHS/loCEdAkE8zgEU0vXV9lChoBkdAYs4xrSE122gHTegDaAhHQJBP63WnTAp1fZQoaAZHQHEtU/B3zMBoB03HAWgIR0CQUBUvf0mMdX2UKGgGR0BxQEPXkHUuaAdNPQFoCEdAkFHGJN0vG3V9lChoBkdAcHJwMH8jzWgHTaEBaAhHQJBR7fIjnmt1fZQoaAZHQG/6qneizs1oB01AAWgIR0CQUgD4QBgedX2UKGgGR0BwH6s0YTCcaAdNuAFoCEdAkFK7RfF72XV9lChoBkdAcKh1IRRMvmgHTSsCaAhHQJBS+704BFN1fZQoaAZHQHI88lsxfv5oB03IAWgIR0CQVPyfL9uQdX2UKGgGR0ByR9fhMrVfaAdNJQFoCEdAkFfKEJ0GNnV9lChoBkdAcuo495hScmgHS/1oCEdAkFhUIHC40HV9lChoBkdAbw3NSIgvDmgHTbsBaAhHQJBZ3jo6jnF1fZQoaAZHQHIzdCVrylNoB00hAWgIR0CQWpuQp4KQdX2UKGgGR0BwJkVj7Q9iaAdNFAFoCEdAkFrePvKEFnV9lChoBkdAcD0pw0fozWgHTacBaAhHQJBbHEGZ/kN1fZQoaAZHQG4moYekpJBoB00IAWgIR0CQXIXuVopQdX2UKGgGR0BuoRWV/tpmaAdNCwJoCEdAkGEEDuBtlHV9lChoBkdAcj9ZUDMeOmgHTUEBaAhHQJBhj3SKFZh1fZQoaAZHQHLAL8BMi8poB0vtaAhHQJBkxAQg9vF1fZQoaAZHQHF+FvhqCYloB02cAWgIR0CQZaqesgdPdX2UKGgGR0Bt/IjB2wFDaAdNgwFoCEdAkGdjvNNahnV9lChoBkdAboH/NJOFg2gHTTEBaAhHQJBpjFefI0Z1fZQoaAZHQG/za8Yht+FoB01hAWgIR0CQa7brkbPydX2UKGgGR0BvOtXHR1HOaAdNegFoCEdAkGxQKjSG8HV9lChoBkdAcRjLZi/fwmgHTWcBaAhHQJBtIlAu7H11fZQoaAZHQHPm08mrsB1oB00SAWgIR0CQbW5Gz8gqdX2UKGgGR0BzN2lyimEXaAdNtgFoCEdAkG4V+7UXpHV9lChoBkdAcd7fBeokzGgHTWEDaAhHQJBuNEqlP8B1fZQoaAZHQG+Kjd56dDpoB00HAWgIR0CQbyt3OfNBdX2UKGgGR0BiLnRw6ySnaAdN6ANoCEdAkG9stf5ULnV9lChoBkdAceoIvJzT4WgHTVwBaAhHQJBvm5QP7N11fZQoaAZHQG2w8NpdrwhoB03hAmgIR0CQcQVC5VfedX2UKGgGR0Bv26sCDEm6aAdNIANoCEdAkHMKur6tT3V9lChoBkdAcczlOoHcDmgHTYQBaAhHQJBz2e8PFvR1fZQoaAZHQHJ/AeeWfK9oB00SAWgIR0CQdQh86V+rdX2UKGgGR0BxZ1xAB1cMaAdNyANoCEdAkIhALux8lXV9lChoBkdAc6ExSpBHC2gHTbwBaAhHQJCISkrPMSt1fZQoaAZHQHI6morFwUBoB00aAWgIR0CQiI8KG+K1dX2UKGgGR0Bwz7CyhSLqaAdNLQFoCEdAkIkrEP1+RnV9lChoBkdAbyiiItUXHmgHTaUBaAhHQJCJXneSB9V1fZQoaAZHQG/9wzLwF1VoB01OAWgIR0CQjpyYXwb3dX2UKGgGR0BwPdo11nuiaAdNGwFoCEdAkI8rWZqmCXV9lChoBkdAcwmsEJSiumgHTZcBaAhHQJCP4rK/2011fZQoaAZHQHC85eRgZ0loB024AWgIR0CQkTMUh3aBdX2UKGgGR0BdYYJ3PiT/aAdN6ANoCEdAkJNG2CuloHV9lChoBkdAbP/rfLs8gmgHTfQBaAhHQJCT/uE25x11fZQoaAZHQHEQU92X9itoB01VAmgIR0CQlP1PWQOndX2UKGgGR0BxlKGKyfL+aAdNFgFoCEdAkJUxJmNBGHV9lChoBkdAc70/LTx5LWgHTQYBaAhHQJCV1iPQv6F1fZQoaAZHQHD7Uhq0tyxoB01tAWgIR0CQlkIdlum8dX2UKGgGR0BymTSro4dZaAdNOgFoCEdAkJf4EfT1CnV9lChoBkdAbtn2HLzPKWgHTYICaAhHQJCYEHryDqZ1fZQoaAZHQHCxP1pTMq1oB012AWgIR0CQmSfXf642dX2UKGgGR0BxNmzMRpUQaAdN4AFoCEdAkJlcSTQmeHV9lChoBkdAb+6c1fmcOWgHTasCaAhHQJCZhBiTdLx1fZQoaAZHQG7YpdSl3yJoB00JAWgIR0CQmpmj0tiAdX2UKGgGR0BwgwXDWK/EaAdNHgFoCEdAkJr3AVO9FnV9lChoBkdAcBcGqxTsIGgHTeYBaAhHQJCcw3Jgb6x1fZQoaAZHQHB/K7ulXRxoB0v6aAhHQJCdJKWcBlt1fZQoaAZHQHF+QuuieupoB00VAWgIR0CQnsloUSIydX2UKGgGR0ByI9LxqfvnaAdNNgFoCEdAkJ7UcfeUIXV9lChoBkdAb/CyGBWge2gHTRMBaAhHQJCe4dGRV6x1fZQoaAZHQG9OczhxYJVoB00WAWgIR0CQn2v1UVBVdX2UKGgGR0ByriMju8braAdNBwFoCEdAkKB1AVwgknV9lChoBkdAcou5iExqPGgHS/1oCEdAkKHCJoCdSXV9lChoBkdAceusjFAE+2gHTfQBaAhHQJCkKYMOPNp1fZQoaAZHQHED39m6GxloB00cAWgIR0CQpHcebNKRdX2UKGgGR0BQAZ31SOzZaAdLh2gIR0CQpY5IH1OCdX2UKGgGR0BxXFeKKpDNaAdNMAFoCEdAkKW3/o7muHV9lChoBkdAbk+rOqvNeWgHTXwBaAhHQJCmNNfw7T51fZQoaAZHQHEGxdpqREFoB03RAWgIR0CQppf2K2rodX2UKGgGR0BxQDF0gbIcaAdNugFoCEdAkKcYzSCvo3V9lChoBkdAcO4Kohpxm2gHTR4BaAhHQJCnHZM+NcZ1fZQoaAZHQG8T19ORDCxoB02nAWgIR0CQp+vvBrN4dX2UKGgGR0ByF+FQEZBLaAdNGgFoCEdAkKi1ar3j/HV9lChoBkdAcHWrKNhmXmgHTUcBaAhHQJCqGnvUjLV1fZQoaAZHQHFaw/PgNw1oB03gAmgIR0CQqywZflZHdX2UKGgGR0BxeN4lhPTHaAdNmgFoCEdAkKtMRQJokHV9lChoBkdAcrnE1VHWjGgHS/JoCEdAkKxNEb5uZXV9lChoBkdAbi44o7V8TmgHTYYBaAhHQJCszeMyaeB1fZQoaAZHQHAeTxoZhrpoB01gAWgIR0CQrevLowEhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |